Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid Crystals Paving Way Towards "Smart-Paper" Displays

18.08.2003


Liquid crystals are most recognized in the form of liquid crystal displays (LCDs)—found in everything from digital watches to notebook computers and flat-panel desktop monitors. But liquid crystals are far more talented than that. In the August 1 issue of the journal Science, for example, University of Wisconsin chemical engineer Nicholas Abbott reported a big step toward using them in flexible, inexpensive "smart-paper" displays, and in ultra-sensitive detectors for biomolecules or toxic chemicals.



Smart paper and biochemical sensors may seem very different, says Abbott, who did this work at Wisconsin’s Materials Research Science and Engineering Center, one of 27 such centers funded by the National Science Foundation. "But the unifying theme of our work is that a thin layer of liquid crystal can greatly amplify a wide range of activities on the underlying surface."

In earlier work, for example, he and his colleagues showed that when proteins or other small molecules were captured on a specially prepared surface, they would perturb the liquid crystal immediately above. But the long, thin molecules in the fluid are always trying to line up in the same direction, says Abbott; that’s why they’re called "liquid crystals" in the first place. So the tiny distortions caused by the bound molecule propagate upward through the liquid for a tenth of a millimeter or so—a vast distance on a molecular scale. The result is a large, easily detectable change in the optical properties of the liquid crystal.


Now, Abbott and his colleagues have produced the same kind of effect in a way that can be controlled electronically. They start by layering the liquid crystal on top of a thin gold foil, which has been coated with a compound known as ferrocene. When the researchers then apply a voltage to the foil, the ferrocene molecules respond by changing their electrical charge. Once again, the change in charge produces a detectable distortion in the liquid crystal orientations above.

"You only need a very low potential to do this," says Abbott, "typically a tenth of a volt, versus tens of volts in a conventional display." That’s exactly what you would need for a flexible, paper-like display, or a rewritable label, he says. But it’s also the kind of voltage that’s typical of biological systems. So you can easily imagine using this technique in a sensor that would allow diabetics, say, to monitor their blood sugar. "When you ask, ’What could you detect?’" he says, "’glucose’ is the first thing that comes to mind." More generally, he adds, by choosing the kind of receptors bound to the foil surface, it should be possible to use the liquid crystal to detect a wide variety of compounds.

M. Mitchell Waldrop | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030818.htm

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>