Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid Crystals Paving Way Towards "Smart-Paper" Displays

18.08.2003


Liquid crystals are most recognized in the form of liquid crystal displays (LCDs)—found in everything from digital watches to notebook computers and flat-panel desktop monitors. But liquid crystals are far more talented than that. In the August 1 issue of the journal Science, for example, University of Wisconsin chemical engineer Nicholas Abbott reported a big step toward using them in flexible, inexpensive "smart-paper" displays, and in ultra-sensitive detectors for biomolecules or toxic chemicals.



Smart paper and biochemical sensors may seem very different, says Abbott, who did this work at Wisconsin’s Materials Research Science and Engineering Center, one of 27 such centers funded by the National Science Foundation. "But the unifying theme of our work is that a thin layer of liquid crystal can greatly amplify a wide range of activities on the underlying surface."

In earlier work, for example, he and his colleagues showed that when proteins or other small molecules were captured on a specially prepared surface, they would perturb the liquid crystal immediately above. But the long, thin molecules in the fluid are always trying to line up in the same direction, says Abbott; that’s why they’re called "liquid crystals" in the first place. So the tiny distortions caused by the bound molecule propagate upward through the liquid for a tenth of a millimeter or so—a vast distance on a molecular scale. The result is a large, easily detectable change in the optical properties of the liquid crystal.


Now, Abbott and his colleagues have produced the same kind of effect in a way that can be controlled electronically. They start by layering the liquid crystal on top of a thin gold foil, which has been coated with a compound known as ferrocene. When the researchers then apply a voltage to the foil, the ferrocene molecules respond by changing their electrical charge. Once again, the change in charge produces a detectable distortion in the liquid crystal orientations above.

"You only need a very low potential to do this," says Abbott, "typically a tenth of a volt, versus tens of volts in a conventional display." That’s exactly what you would need for a flexible, paper-like display, or a rewritable label, he says. But it’s also the kind of voltage that’s typical of biological systems. So you can easily imagine using this technique in a sensor that would allow diabetics, say, to monitor their blood sugar. "When you ask, ’What could you detect?’" he says, "’glucose’ is the first thing that comes to mind." More generally, he adds, by choosing the kind of receptors bound to the foil surface, it should be possible to use the liquid crystal to detect a wide variety of compounds.

M. Mitchell Waldrop | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030818.htm

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>