Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Invents New Graphing Method

13.08.2003


“Diamond Graph” Corrects Long-Standing Errors of 3-D Bar Graphs


Example of New Diamond Graph



Looks can be deceiving. That’s one of the problems with today’s three-dimensional bar graph. While these graphs may look correct, researchers from the Johns Hopkins Bloomberg School of Public Health believe they are in fact inaccurate and misleading.

Currently, the 3-D bar graph is used in countless computer programs, scientific journals, and newspapers to display financial, medical, and other information in which two variables lead to an outcome. Alvaro Muñoz, PhD, a professor of epidemiology at the School of Public Health, has developed the new Diamond Graph, which corrects these errors and represents all the variables equally in a form that is easy to read. He believes the new graphing method could replace the traditional 3-D bar graph in software commonly used in business and science. Dr. Muñoz and his colleagues described the Diamond Graph method in an article published in the August 2003 edition of the peer-reviewed journal, The American Statistician.


So what is wrong with the old method? According to Dr. Muñoz, the 3-D bar graph has three main flaws. First, the variables, which equally contribute to an outcome, are not equally represented in the diagram. This gives the impression that one variable is more important than another. Second, it is sometimes difficult, if not impossible, to distinguish the true value of the bars, because of the problems of representing a three-dimensional image on a two-dimensional page. Because of perspective, some bars appear to be of greater or lesser value when they are actually of equal value. The third drawback of the 3-D graph is that it cannot be used to present overlapping data. In some cases, parallel bars with higher values may obscure those with lower values making the graph useless.

“The inaccuracies of the traditional 3-D bar graph may seem trivial, but they can be significant when you’re dealing with important information like predicting your risk for a heart attack or plotting the performance of your company investments,” said Dr. Muñoz.

The new Diamond Graph method corrects the inaccuracies and limitations of the 3-D bar graph by representing all variables equally on a 2-D graph. The Diamond Graph is essentially the view of the bar graph from above rather than from the side. Instead of using rising parallel bars, the Diamond Graph uses expanding polygons within a diamond-shaped grid to represent values. The researcher experimented with other shapes, but found that the six-sided polygon was the only shape to represent the outcomes equally within the grid as it expanded.

Over the years, other researchers have attempted to develop a better graphing method, but the Diamond graph is the first to equally represent the relationships between a continuous outcome and each of the two categorical predictors in a single plot.

“We call our new method of display the Diamond Graph. It has the shape, and hopefully, the value of a diamond. Perhaps more importantly, it is reminiscent of the baseball diamond that The American Statisticians equiponderantly love. Who would have thought we would still be inventing new methods of graphing in the twenty-first century?”

Johns Hopkins University is seeking partners who would like to incorporate the Damond Graph method into their commercial software. JHU has a patent pending. Inquiries may be directed to Deborah Alper at Johns Hopkins Bloomberg School of Public Health at dalper@jhsph.edu or 443-287-0402.

“A Diamond-Shaped Equiponderant Graphical Display of the Effects of Two Categorical Predictors on Continuous Outcomes” was written by Xiuhong Li, Jennifer M. Buechner, Patrick M. Tarwater and Alvaro Muñoz.

The research was sponsored by grants from the National Institute of Allergy and Infectious Diseases.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu .

Tim Parsons | Johns Hopkins University
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/Munoz_diamond_graph.html

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>