Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


INEEL researchers develop medical imagery breakthrough


System detects tissue changes

Digitally altered Denver suburb

Although these two images of a Denver suburb look virtually identical when compared side by side, some details have been digitally altered for illustration. Although most people can spot the lake and building missing from one photo (middle left), the Change Detection System (CDS) program immediately reveals that a swimming pool (lower right neighborhood) and a dirt track (upper right field) are also absent from one of the images. The large photo below has graphic highlights in yellow to emphasize the changes that CDS software makes visible. (Photo by Space Imaging®, Digital Airborne Imaging System)

Mammograms, X-rays and other pricey medical scans do little good if doctors can’t see the tiny changes that signal early stages of disease. But such warning signs are often too subtle to spot by eye, and too complex for computers to interpret. Scientists at the U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory have developed the Change Detection System, technology that highlights slight differences between digital images. In fact, lead researcher Greg Lancaster convinced doctors of the program’s power when he used it to compare scans of his own brain after he’d had a tumor removed. One medical technology firm is already looking to license the program.

This medical advance is a direct result of applying national security technology, which was initiated through funding from the DOE’s Applied Technology Program. The CDS software is so quick, easy and affordable that it now boasts a spot among the 100 most technologically significant products introduced in the past year. R&D Magazine editors notified the winners in July and will feature the winning products in the September issue.

Medical imaging often involves comparing side-by-side images to see if changes have emerged. But discerning minuscule differences between two pictures can be nearly impossible. Computers even struggle with the task, laboriously scrutinizing each pixel and often finding only trivial differences in camera angle.

In the past, the best technology available for comparing images has been the flip-flop technique, which capitalizes on the visual reflex that draws our eyes toward motion. Rapidly alternating between two similar digital images on a screen creates an animation effect where identical elements seem stationary and differences appear as movement. But the flip-flop approach requires that both pictures be shot from the exact same position using a mounted camera. Since stationary cameras are impractical in many cases, flip-flop comparisons are often impossible.

Now, the CDS technology developed by the INEEL’s Lancaster, James Litton Jones and Gordon Lassahn combines the strengths of rote computer analysis with the powerful human reflex elicited by the flip-flop technique. The CDS program aligns images, to within a fraction of a pixel, from hand-held or otherwise imprecise cameras. The alignment compensates for differences in camera angle, height, zoom or other distractions that previously confounded flip-flop comparisons.

Flipping between two seemingly identical images aligned by CDS reveals once imperceptible differences--tiny retinal changes signal macular degeneration, small earthen shifts herald hill erosion, footprints appear in a gravel road. The alignment process takes only seconds and the software is simple enough to be operated by a 10-year-old child. What’s more, the 350 KB program can operate on a standard PC or even a handheld computer.

Such versatility makes the program attractive to everyone from security guards to working parents, field researchers to physicians. Potential applications for this technology include surveillance (detect whether doors have been opened or cars have been moved), forensics (compare tire prints or fingerprints), national security (reveal tampering with container locks and seals), home security (divulge whether drawers or rooms were disturbed), and field research (monitor environmental changes). And the medical applications became clear to Lancaster as he grappled with a brain tumor during research for the CDS project.

After doctors removed the growth, they monitored Lancaster’s brain with twice yearly MRI scans to make sure the tumor didn’t return. As his physicians squinted at the images, searching for the tiniest change, Lancaster worried they might miss something.

"They just stare at them to try to find differences," said Lancaster. "I said, ’Man, that’s so archaic,’" Lancaster decided to test his doctors’ powers of perception with and without CDS.

"I took an image, altered it ever so slightly, brought in both pictures and said, ’Can you see a difference?’ They looked at the two images and admitted, ’Well, no,’" Lancaster said. "But with the flip-flop method, it really pops out. They said, ’Wow! What a tool!’"

As CDS hits the marketplace, it joins 28 previous R&D 100 winners developed at INEEL in the last 18 years. This is the 7th year in a row that INEEL has won a spot in the R&D 100 ranking.

The INEEL is a science-based, multiprogram national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Additional information on CDS, including photo illustrations, can be seen by visiting

Nicole Stricker | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>