Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL researchers develop medical imagery breakthrough

12.08.2003


System detects tissue changes


Digitally altered Denver suburb

Although these two images of a Denver suburb look virtually identical when compared side by side, some details have been digitally altered for illustration. Although most people can spot the lake and building missing from one photo (middle left), the Change Detection System (CDS) program immediately reveals that a swimming pool (lower right neighborhood) and a dirt track (upper right field) are also absent from one of the images. The large photo below has graphic highlights in yellow to emphasize the changes that CDS software makes visible. (Photo by Space Imaging®, Digital Airborne Imaging System)




Mammograms, X-rays and other pricey medical scans do little good if doctors can’t see the tiny changes that signal early stages of disease. But such warning signs are often too subtle to spot by eye, and too complex for computers to interpret. Scientists at the U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory have developed the Change Detection System, technology that highlights slight differences between digital images. In fact, lead researcher Greg Lancaster convinced doctors of the program’s power when he used it to compare scans of his own brain after he’d had a tumor removed. One medical technology firm is already looking to license the program.

This medical advance is a direct result of applying national security technology, which was initiated through funding from the DOE’s Applied Technology Program. The CDS software is so quick, easy and affordable that it now boasts a spot among the 100 most technologically significant products introduced in the past year. R&D Magazine editors notified the winners in July and will feature the winning products in the September issue.


Medical imaging often involves comparing side-by-side images to see if changes have emerged. But discerning minuscule differences between two pictures can be nearly impossible. Computers even struggle with the task, laboriously scrutinizing each pixel and often finding only trivial differences in camera angle.

In the past, the best technology available for comparing images has been the flip-flop technique, which capitalizes on the visual reflex that draws our eyes toward motion. Rapidly alternating between two similar digital images on a screen creates an animation effect where identical elements seem stationary and differences appear as movement. But the flip-flop approach requires that both pictures be shot from the exact same position using a mounted camera. Since stationary cameras are impractical in many cases, flip-flop comparisons are often impossible.

Now, the CDS technology developed by the INEEL’s Lancaster, James Litton Jones and Gordon Lassahn combines the strengths of rote computer analysis with the powerful human reflex elicited by the flip-flop technique. The CDS program aligns images, to within a fraction of a pixel, from hand-held or otherwise imprecise cameras. The alignment compensates for differences in camera angle, height, zoom or other distractions that previously confounded flip-flop comparisons.

Flipping between two seemingly identical images aligned by CDS reveals once imperceptible differences--tiny retinal changes signal macular degeneration, small earthen shifts herald hill erosion, footprints appear in a gravel road. The alignment process takes only seconds and the software is simple enough to be operated by a 10-year-old child. What’s more, the 350 KB program can operate on a standard PC or even a handheld computer.

Such versatility makes the program attractive to everyone from security guards to working parents, field researchers to physicians. Potential applications for this technology include surveillance (detect whether doors have been opened or cars have been moved), forensics (compare tire prints or fingerprints), national security (reveal tampering with container locks and seals), home security (divulge whether drawers or rooms were disturbed), and field research (monitor environmental changes). And the medical applications became clear to Lancaster as he grappled with a brain tumor during research for the CDS project.

After doctors removed the growth, they monitored Lancaster’s brain with twice yearly MRI scans to make sure the tumor didn’t return. As his physicians squinted at the images, searching for the tiniest change, Lancaster worried they might miss something.

"They just stare at them to try to find differences," said Lancaster. "I said, ’Man, that’s so archaic,’" Lancaster decided to test his doctors’ powers of perception with and without CDS.

"I took an image, altered it ever so slightly, brought in both pictures and said, ’Can you see a difference?’ They looked at the two images and admitted, ’Well, no,’" Lancaster said. "But with the flip-flop method, it really pops out. They said, ’Wow! What a tool!’"



As CDS hits the marketplace, it joins 28 previous R&D 100 winners developed at INEEL in the last 18 years. This is the 7th year in a row that INEEL has won a spot in the R&D 100 ranking.

The INEEL is a science-based, multiprogram national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Additional information on CDS, including photo illustrations, can be seen by visiting http://www.inel.gov.





Nicole Stricker | EurekAlert!
Further information:
http://www.inel.gov/
http://www.inel.gov/featurestories/08-03cds-photos.shtml

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>