Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL researchers develop medical imagery breakthrough

12.08.2003


System detects tissue changes


Digitally altered Denver suburb

Although these two images of a Denver suburb look virtually identical when compared side by side, some details have been digitally altered for illustration. Although most people can spot the lake and building missing from one photo (middle left), the Change Detection System (CDS) program immediately reveals that a swimming pool (lower right neighborhood) and a dirt track (upper right field) are also absent from one of the images. The large photo below has graphic highlights in yellow to emphasize the changes that CDS software makes visible. (Photo by Space Imaging®, Digital Airborne Imaging System)




Mammograms, X-rays and other pricey medical scans do little good if doctors can’t see the tiny changes that signal early stages of disease. But such warning signs are often too subtle to spot by eye, and too complex for computers to interpret. Scientists at the U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory have developed the Change Detection System, technology that highlights slight differences between digital images. In fact, lead researcher Greg Lancaster convinced doctors of the program’s power when he used it to compare scans of his own brain after he’d had a tumor removed. One medical technology firm is already looking to license the program.

This medical advance is a direct result of applying national security technology, which was initiated through funding from the DOE’s Applied Technology Program. The CDS software is so quick, easy and affordable that it now boasts a spot among the 100 most technologically significant products introduced in the past year. R&D Magazine editors notified the winners in July and will feature the winning products in the September issue.


Medical imaging often involves comparing side-by-side images to see if changes have emerged. But discerning minuscule differences between two pictures can be nearly impossible. Computers even struggle with the task, laboriously scrutinizing each pixel and often finding only trivial differences in camera angle.

In the past, the best technology available for comparing images has been the flip-flop technique, which capitalizes on the visual reflex that draws our eyes toward motion. Rapidly alternating between two similar digital images on a screen creates an animation effect where identical elements seem stationary and differences appear as movement. But the flip-flop approach requires that both pictures be shot from the exact same position using a mounted camera. Since stationary cameras are impractical in many cases, flip-flop comparisons are often impossible.

Now, the CDS technology developed by the INEEL’s Lancaster, James Litton Jones and Gordon Lassahn combines the strengths of rote computer analysis with the powerful human reflex elicited by the flip-flop technique. The CDS program aligns images, to within a fraction of a pixel, from hand-held or otherwise imprecise cameras. The alignment compensates for differences in camera angle, height, zoom or other distractions that previously confounded flip-flop comparisons.

Flipping between two seemingly identical images aligned by CDS reveals once imperceptible differences--tiny retinal changes signal macular degeneration, small earthen shifts herald hill erosion, footprints appear in a gravel road. The alignment process takes only seconds and the software is simple enough to be operated by a 10-year-old child. What’s more, the 350 KB program can operate on a standard PC or even a handheld computer.

Such versatility makes the program attractive to everyone from security guards to working parents, field researchers to physicians. Potential applications for this technology include surveillance (detect whether doors have been opened or cars have been moved), forensics (compare tire prints or fingerprints), national security (reveal tampering with container locks and seals), home security (divulge whether drawers or rooms were disturbed), and field research (monitor environmental changes). And the medical applications became clear to Lancaster as he grappled with a brain tumor during research for the CDS project.

After doctors removed the growth, they monitored Lancaster’s brain with twice yearly MRI scans to make sure the tumor didn’t return. As his physicians squinted at the images, searching for the tiniest change, Lancaster worried they might miss something.

"They just stare at them to try to find differences," said Lancaster. "I said, ’Man, that’s so archaic,’" Lancaster decided to test his doctors’ powers of perception with and without CDS.

"I took an image, altered it ever so slightly, brought in both pictures and said, ’Can you see a difference?’ They looked at the two images and admitted, ’Well, no,’" Lancaster said. "But with the flip-flop method, it really pops out. They said, ’Wow! What a tool!’"



As CDS hits the marketplace, it joins 28 previous R&D 100 winners developed at INEEL in the last 18 years. This is the 7th year in a row that INEEL has won a spot in the R&D 100 ranking.

The INEEL is a science-based, multiprogram national laboratory dedicated to supporting the U.S. Department of Energy’s missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Additional information on CDS, including photo illustrations, can be seen by visiting http://www.inel.gov.





Nicole Stricker | EurekAlert!
Further information:
http://www.inel.gov/
http://www.inel.gov/featurestories/08-03cds-photos.shtml

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>