Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create the world’s fastest detailed computer simulations of the Internet

11.08.2003


Simulate Network Traffic from over 1 Million Web Browsers in Near Real Time


An illustration of an inter-network of 10 benchmark campus subnet models, each consisting of 538 nodes. Blue circles indicate subnets, yellow dots represent network nodes, and red lines indicate communication links connecting the nodes.



Researchers at the Georgia Institute of Technology have created the fastest detailed computer simulations of computer networks ever constructed—simulating networks containing more than 5 million network elements. This work will lead to improved speed, reliability and security of future networks such as the Internet, according to Professor Richard Fujimoto, lead principal investigator of the DARPA-funded project (Defense Advanced Research Projects Agency).

These “packet-level simulations” model individual data packets as they travel through a computer network. Downloading a web page to one’s home computer or sending an e-mail message typically involves transmitting several packets through the Internet. Packet-level simulations provide a detailed, accurate representation of network behavior (e.g., congestion), but are very time consuming to complete.


Engineers and scientists routinely use such simulations to design and analyze new networks and to understand phenomena such as Denial of Service attacks that have plagued the Internet in recent years. Because of the time required to complete the simulation computations, most studies today are limited to modeling a few hundred network components such as routers, servers and end-user computers.

“The end goal of research on network modeling and simulation is to create a more reliable and higher-performance Internet,” says Fujimoto. “Our team has created a computer simulation that is two to three orders of magnitude faster than simulators commonly used by networking researchers today. This finding offers new capabilities for engineers and scientists to study large-scale computer networks in the laboratory to find solutions to Internet and network problems that were not possible before.”

The Georgia Tech researchers have demonstrated the ability to simulate network traffic from over 1 million web browsers in near real time. This feat means that the simulators could model a minute of such large-scale network operations in only a few minutes of clock time.

Using the high-performance computers at the Pittsburgh Supercomputing Center, the Georgia Tech simulators used as many as 1,534 processors to simultaneously work on the simulation computation, enabling them to model more than 106 million packet transmissions in one second of clock time—two to three orders of magnitude faster than simulators commonly used today. In comparison, the next closest packet-level simulations of which the research team is aware have simulated only a few million packet transmissions per second.

The research team plans to present their findings at the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS) in October. Team members include: Mostafa Ammar, Regents professor of Computing; Kalyan Perumalla, post-doctoral/research faculty; George Riley, assistant professor in School of Electrical and Computer Engineering; and Fujimoto. Graduate students involved in this project include Alfred Park, Computing and Talal Jaafar, Electrical and Computer Engineering.

Major funding was provided by the Network Modeling and Simulation Program of the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation. The cluster computing platforms at Georgia Tech were obtained through a grant from Intel.

Elizabeth Campell | EurekAlert!
Further information:
http://www.lfu.baden-wuerttemberg.de
http://www.bmu.de

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>