Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create the world’s fastest detailed computer simulations of the Internet

11.08.2003


Simulate Network Traffic from over 1 Million Web Browsers in Near Real Time


An illustration of an inter-network of 10 benchmark campus subnet models, each consisting of 538 nodes. Blue circles indicate subnets, yellow dots represent network nodes, and red lines indicate communication links connecting the nodes.



Researchers at the Georgia Institute of Technology have created the fastest detailed computer simulations of computer networks ever constructed—simulating networks containing more than 5 million network elements. This work will lead to improved speed, reliability and security of future networks such as the Internet, according to Professor Richard Fujimoto, lead principal investigator of the DARPA-funded project (Defense Advanced Research Projects Agency).

These “packet-level simulations” model individual data packets as they travel through a computer network. Downloading a web page to one’s home computer or sending an e-mail message typically involves transmitting several packets through the Internet. Packet-level simulations provide a detailed, accurate representation of network behavior (e.g., congestion), but are very time consuming to complete.


Engineers and scientists routinely use such simulations to design and analyze new networks and to understand phenomena such as Denial of Service attacks that have plagued the Internet in recent years. Because of the time required to complete the simulation computations, most studies today are limited to modeling a few hundred network components such as routers, servers and end-user computers.

“The end goal of research on network modeling and simulation is to create a more reliable and higher-performance Internet,” says Fujimoto. “Our team has created a computer simulation that is two to three orders of magnitude faster than simulators commonly used by networking researchers today. This finding offers new capabilities for engineers and scientists to study large-scale computer networks in the laboratory to find solutions to Internet and network problems that were not possible before.”

The Georgia Tech researchers have demonstrated the ability to simulate network traffic from over 1 million web browsers in near real time. This feat means that the simulators could model a minute of such large-scale network operations in only a few minutes of clock time.

Using the high-performance computers at the Pittsburgh Supercomputing Center, the Georgia Tech simulators used as many as 1,534 processors to simultaneously work on the simulation computation, enabling them to model more than 106 million packet transmissions in one second of clock time—two to three orders of magnitude faster than simulators commonly used today. In comparison, the next closest packet-level simulations of which the research team is aware have simulated only a few million packet transmissions per second.

The research team plans to present their findings at the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS) in October. Team members include: Mostafa Ammar, Regents professor of Computing; Kalyan Perumalla, post-doctoral/research faculty; George Riley, assistant professor in School of Electrical and Computer Engineering; and Fujimoto. Graduate students involved in this project include Alfred Park, Computing and Talal Jaafar, Electrical and Computer Engineering.

Major funding was provided by the Network Modeling and Simulation Program of the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation. The cluster computing platforms at Georgia Tech were obtained through a grant from Intel.

Elizabeth Campell | EurekAlert!
Further information:
http://www.lfu.baden-wuerttemberg.de
http://www.bmu.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>