Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers create the world’s fastest detailed computer simulations of the Internet


Simulate Network Traffic from over 1 Million Web Browsers in Near Real Time

An illustration of an inter-network of 10 benchmark campus subnet models, each consisting of 538 nodes. Blue circles indicate subnets, yellow dots represent network nodes, and red lines indicate communication links connecting the nodes.

Researchers at the Georgia Institute of Technology have created the fastest detailed computer simulations of computer networks ever constructed—simulating networks containing more than 5 million network elements. This work will lead to improved speed, reliability and security of future networks such as the Internet, according to Professor Richard Fujimoto, lead principal investigator of the DARPA-funded project (Defense Advanced Research Projects Agency).

These “packet-level simulations” model individual data packets as they travel through a computer network. Downloading a web page to one’s home computer or sending an e-mail message typically involves transmitting several packets through the Internet. Packet-level simulations provide a detailed, accurate representation of network behavior (e.g., congestion), but are very time consuming to complete.

Engineers and scientists routinely use such simulations to design and analyze new networks and to understand phenomena such as Denial of Service attacks that have plagued the Internet in recent years. Because of the time required to complete the simulation computations, most studies today are limited to modeling a few hundred network components such as routers, servers and end-user computers.

“The end goal of research on network modeling and simulation is to create a more reliable and higher-performance Internet,” says Fujimoto. “Our team has created a computer simulation that is two to three orders of magnitude faster than simulators commonly used by networking researchers today. This finding offers new capabilities for engineers and scientists to study large-scale computer networks in the laboratory to find solutions to Internet and network problems that were not possible before.”

The Georgia Tech researchers have demonstrated the ability to simulate network traffic from over 1 million web browsers in near real time. This feat means that the simulators could model a minute of such large-scale network operations in only a few minutes of clock time.

Using the high-performance computers at the Pittsburgh Supercomputing Center, the Georgia Tech simulators used as many as 1,534 processors to simultaneously work on the simulation computation, enabling them to model more than 106 million packet transmissions in one second of clock time—two to three orders of magnitude faster than simulators commonly used today. In comparison, the next closest packet-level simulations of which the research team is aware have simulated only a few million packet transmissions per second.

The research team plans to present their findings at the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS) in October. Team members include: Mostafa Ammar, Regents professor of Computing; Kalyan Perumalla, post-doctoral/research faculty; George Riley, assistant professor in School of Electrical and Computer Engineering; and Fujimoto. Graduate students involved in this project include Alfred Park, Computing and Talal Jaafar, Electrical and Computer Engineering.

Major funding was provided by the Network Modeling and Simulation Program of the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation. The cluster computing platforms at Georgia Tech were obtained through a grant from Intel.

Elizabeth Campell | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>