Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Processor at disposal of the Environment Intelligence

01.08.2003


On August 18th and 19th in Stanford, California, at Hot Chips 15 conference, the most important international event on processors architecture, mAgic VLIW will be presented: it is a revolutionary electronic component derived by technologies developed by Italian National Institute for Nuclear Physics (Infn) in the context of the special project Ape and conceived by the Italian company Ipitec, financed by Atmel. The processor will be produced by Atmel itself, a world-wide leader in the semiconductor market.

MAgic VLIW surface is about 25 square millimetres, equal to a fourth of a little finger nail, and it is able to do a billion and a half operations per second, spending only half a watt, which means fifty times less than a personal computer with the same computing power. The new component has been conceived mainly to create the so-called environment intelligence, generally considered next bound of electronics. The environment intelligence is an hardware and software ensemble that will be able to provide flexible systems, capable of elaborating different signals coming from the surrounding environment, such as sounds, images or radio waves. In this way, it will be possible to interact with surrounding things in a more natural way, as if you communicate with another human being. In fact human being is able to concentrate on the sound of a voice or on a face, ignoring noises or images around, rather than using simple commands proper of usual interaction with a computer.

Thanks to its very high computing power, mAgic enables to create miniaturized electronic systems able to elaborate in real-time, audio, ultrasonic and radio complex signals in input and output.



MAgic VLIW will be immediately marketed by Atmel with a first System on Chip named "Janus", specialized in synthetic beam-forming of directional waves (audio, radio, ultrasonic and radar) and physical modelling (real-time reproduction of a system behaviour, starting from equations that describe it).
"One of the most interesting applications of this system is an innovative generation of digital instruments for ecographic ultrasound scanners that will provide clearer images than the ones provided by traditional scanners and surely for lower cost. A prototype is studied by the Italian company Esaote and it will be set up by 2004. A second application that mAgic VLIW will enable is a very high quality and a low cost hand-free audio-conference system: you can phone and in the meantime do any other kind of activity (voice will be received through several microphones and it will be separated from echoes and noises). Moreover mAgic VLIW will be used to obtain high speed radio connections", explains Pier Stanislao Paolucci, researcher of Infn section in Rome and director of mAgic VLIW project.

The Technological know-how, that allowed the divelopment of mAgic VLIWwas created in the context of the Infn special project Ape (Array Processor Experiment). The project was born in 1984 by a group of Italian Theoretical Physicists led by Nicola Cabibbo and Giorgio Parisi, both professors at La Sapienza University in Rome and Physicists at Infn. The aim of the project is the development of Theoretical Physics simulation- of super- computers for the study of Theoretical Physics of interactions of elementary particles. "Since the beginning of the project, three generations of massive parallel computers were created and the fourth, apeNext, will be available for researchers in September. Machines of "Ape family" have provided European scientists with more and more powerful supercomputing instruments for the study of the characteristics of elementary particles" explains Nicola Cabibbo. Ape project is currently directed by Federico Rapuano, of Infn in Rome La Sapienza section, who remarks: "Today most European Physicists involved in the field of the fundamental interactions uses Ape machines. It is a great success for Italian research in a context traditionally dominated by American and Japanese technology.

At the same time, some of the ideas developed by Ape project have become key ingredients for the develpoment of low power and cost-high performance processors. Ipitec is a research and development centre founded in 2000 and it has been located in Rome in order to be close to the reasearch group and to the technologies developed by Infn in Ape context. Lots of Ipitec designers have begun their professional activity in the Ape project. Atmel, a Silicon Valley company founder and financer of Ipitic, has produced integrated circuits designed by Infn and used in the Ape machines Raffaele Tripiccione, coordinator of Ape project says "integrated circuits of Ape represent one of the few cases of complete computing processors developed in Europe."

MAgic VLIW project has attracted investements from the United States to Italy and is creating highly qualified jobs, even thanks to an important contribution from the European Commission (mAgic VLIW Esprit project 27000).

For further information:

Prof. Nicola Cabibbo
e-mail: nicola.cabibbo@roma1infn.it

Prof. Federico Rapuano
INFN Rome Section and Physics Department University Milano-Bicocca
e-mail: federico.rapuano@roma1.infn.it

Prof. Raffaele Tripiccione
INFN Ferrara Section and Physics Department University of Ferrara
e-mail: raffaele.tripiccione@fe.infn.it

Dr. Pier Stanislao Paolucci
e-mail: Pier.Paolucci@roma1.infn.it

INFN Communication Office
Dr. Barbara Gallavotti
e-mail: Barbara.Gallavotti@Presid.infn.it

Barbara Gallavotti | alfa
Further information:
http://www.infn.it/comunicati

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>