Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Processor at disposal of the Environment Intelligence

01.08.2003


On August 18th and 19th in Stanford, California, at Hot Chips 15 conference, the most important international event on processors architecture, mAgic VLIW will be presented: it is a revolutionary electronic component derived by technologies developed by Italian National Institute for Nuclear Physics (Infn) in the context of the special project Ape and conceived by the Italian company Ipitec, financed by Atmel. The processor will be produced by Atmel itself, a world-wide leader in the semiconductor market.

MAgic VLIW surface is about 25 square millimetres, equal to a fourth of a little finger nail, and it is able to do a billion and a half operations per second, spending only half a watt, which means fifty times less than a personal computer with the same computing power. The new component has been conceived mainly to create the so-called environment intelligence, generally considered next bound of electronics. The environment intelligence is an hardware and software ensemble that will be able to provide flexible systems, capable of elaborating different signals coming from the surrounding environment, such as sounds, images or radio waves. In this way, it will be possible to interact with surrounding things in a more natural way, as if you communicate with another human being. In fact human being is able to concentrate on the sound of a voice or on a face, ignoring noises or images around, rather than using simple commands proper of usual interaction with a computer.

Thanks to its very high computing power, mAgic enables to create miniaturized electronic systems able to elaborate in real-time, audio, ultrasonic and radio complex signals in input and output.



MAgic VLIW will be immediately marketed by Atmel with a first System on Chip named "Janus", specialized in synthetic beam-forming of directional waves (audio, radio, ultrasonic and radar) and physical modelling (real-time reproduction of a system behaviour, starting from equations that describe it).
"One of the most interesting applications of this system is an innovative generation of digital instruments for ecographic ultrasound scanners that will provide clearer images than the ones provided by traditional scanners and surely for lower cost. A prototype is studied by the Italian company Esaote and it will be set up by 2004. A second application that mAgic VLIW will enable is a very high quality and a low cost hand-free audio-conference system: you can phone and in the meantime do any other kind of activity (voice will be received through several microphones and it will be separated from echoes and noises). Moreover mAgic VLIW will be used to obtain high speed radio connections", explains Pier Stanislao Paolucci, researcher of Infn section in Rome and director of mAgic VLIW project.

The Technological know-how, that allowed the divelopment of mAgic VLIWwas created in the context of the Infn special project Ape (Array Processor Experiment). The project was born in 1984 by a group of Italian Theoretical Physicists led by Nicola Cabibbo and Giorgio Parisi, both professors at La Sapienza University in Rome and Physicists at Infn. The aim of the project is the development of Theoretical Physics simulation- of super- computers for the study of Theoretical Physics of interactions of elementary particles. "Since the beginning of the project, three generations of massive parallel computers were created and the fourth, apeNext, will be available for researchers in September. Machines of "Ape family" have provided European scientists with more and more powerful supercomputing instruments for the study of the characteristics of elementary particles" explains Nicola Cabibbo. Ape project is currently directed by Federico Rapuano, of Infn in Rome La Sapienza section, who remarks: "Today most European Physicists involved in the field of the fundamental interactions uses Ape machines. It is a great success for Italian research in a context traditionally dominated by American and Japanese technology.

At the same time, some of the ideas developed by Ape project have become key ingredients for the develpoment of low power and cost-high performance processors. Ipitec is a research and development centre founded in 2000 and it has been located in Rome in order to be close to the reasearch group and to the technologies developed by Infn in Ape context. Lots of Ipitec designers have begun their professional activity in the Ape project. Atmel, a Silicon Valley company founder and financer of Ipitic, has produced integrated circuits designed by Infn and used in the Ape machines Raffaele Tripiccione, coordinator of Ape project says "integrated circuits of Ape represent one of the few cases of complete computing processors developed in Europe."

MAgic VLIW project has attracted investements from the United States to Italy and is creating highly qualified jobs, even thanks to an important contribution from the European Commission (mAgic VLIW Esprit project 27000).

For further information:

Prof. Nicola Cabibbo
e-mail: nicola.cabibbo@roma1infn.it

Prof. Federico Rapuano
INFN Rome Section and Physics Department University Milano-Bicocca
e-mail: federico.rapuano@roma1.infn.it

Prof. Raffaele Tripiccione
INFN Ferrara Section and Physics Department University of Ferrara
e-mail: raffaele.tripiccione@fe.infn.it

Dr. Pier Stanislao Paolucci
e-mail: Pier.Paolucci@roma1.infn.it

INFN Communication Office
Dr. Barbara Gallavotti
e-mail: Barbara.Gallavotti@Presid.infn.it

Barbara Gallavotti | alfa
Further information:
http://www.infn.it/comunicati

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>