Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic Voting System is Vulnerable to Tampering

25.07.2003


Computer Researchers Find Critical Flaws in Popular Software Produced for U.S. Elections


Avi Rubin, technical director of the Information Security Institute at Johns Hopkins University

Photo by Will Kirk



The software believed to be at the heart of an electronic voting system being marketed for use in elections across the nation has weaknesses that could easily allow someone to cast multiple votes for one candidate, computer security researchers at The Johns Hopkins University have determined.

The researchers reached this conclusion after studying computer code believed to be for Ohio-based Diebold Election Systems’ electronic voting equipment. The code, which included modifications made through 2002, was posted anonymously to a public Web site earlier this year. During 2002, approximately 33,000 Diebold voting stations, which allow ballots to be cast via a 15-inch touch-screen monitor, were used in elections in Georgia, California, Kansas and other locations, according to a company news release. On July 21, the company finalized an agreement with the state of Maryland to provide up to $55.6 million in touch-screen voting technology and related services.


But after analyzing tens of thousands of lines of programming code purportedly used to make this electronic voting system work, three researchers from the Information Security Institute at Johns Hopkins, aided by a computer scientist at Rice University in Houston, have expressed serious concerns about the voting system. The researchers said they uncovered vulnerabilities in the system that could be exploited by an individual or group intent on tampering with election results. In particular, they pointed to the use of a "smart card," containing a tiny computer chip, that each eligible voter receives. The card, inserted into the electronic voting machine, is designed to ensure that each person casts only one ballot. But the researchers believe a voter could hide a specially programmed counterfeit card in a pocket, withdraw it inside the booth and use it to cast multiple votes for a single candidate.

"A 15-year-old computer enthusiast could make these counterfeit cards in a garage and sell them," said Avi Rubin, technical director of the Information Security Institute at Johns Hopkins and one of the researchers involved in the study. "Then, even an ordinary voter, without knowing anything about computer code, could cast more than one vote for a candidate at a polling place that uses this electronic voting system."

The researchers were quick to note that no evidence exists that anyone has used such tactics to tamper with an election. However, they chose to make their findings public because of concerns that election fraud will almost certainly occur if weaknesses in the electronic voting system are not addressed before many more jurisdictions move to this method of picking public officials.

The security flaws were discovered this summer after Rubin assigned Adam Stubblefield, 22, and Yoshi Kohno, 25, two computer science doctoral students at the institute, to review the voting software code found on the Web. The students analyzed only those files that were publicly accessible and did not attempt to breach others that were protected by passwords. "Many of the attacks are very simple," Kohno said. "It is unfortunate to find such flaws in a system potentially as important as this one." Stubblefield added, "When people vote in the United States, they have to believe the election is fair."

The researchers, joined by Dan Wallach, an assistant professor of computer science at Rice University, were able to reconstruct the electronic voting terminal in a Johns Hopkins computer lab and detected the security problems. "Even without access to the protected files, we’ve determined this system is fundamentally flawed," Rubin said. "There will be no easy fix for this."

The issue is important, Rubin said, because problems related to Florida’s punch card ballots during the 2000 Presidential election have prompted many cities and states to consider computer screen voting systems as a better alternative. But Rubin, who has conducted extensive research into electronic voting and has been tapped to review the security of a federal electronic voting proposal, said the move to high-tech balloting should not be conducted in haste. "People are rushing too quickly to computerize our method of voting before we know how to do it securely," he said.

The researchers have detailed their findings in a technical paper

Although the researchers have not independently verified the current or past use of the code by Diebold or that the code they analyzed is actually Diebold code, they stated in their technical paper that "the copyright notices and code legacy information in the code itself are consistent with publicly available systems offered by Diebold and a company it acquired in 2001, Global Election Systems. Also, the code itself compiled and worked as an election system consistent with Diebold’s public descriptions of its system."

Contact Phil Sneiderman | Johns Hopkins University
Further information:
http://www.jhuisi.jhu.edu
http://www.avirubin.com

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>