Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue software promises better animation for movies, games

17.07.2003


Researchers at Purdue University are creating interactive software that artists could use to make realistic animations of cloud formations, explosions, smoke, steam, fog and other gaseous phenomena for movies and video games.


Purdue University engineering student Joshua Schpok has created a software program, called Swell, that can be used by artists to create realistic animations of cloud formations for movies and video games. The same approach also could be used to design software for creating animations of any gaseous phenomena, such as explosions, smoke, steam and fog. This image is an example of a cloud from one of the animations. (Purdue University graphic/Joshua Schpok)



The same software might also be used by meteorologists to create accurate representations of quickly developing weather conditions. Because the software is interactive, it shows results immediately, whereas conventional programs might take hours to complete such animations, said David Ebert, an associate professor in Purdue’s School of Electrical and Computer Engineering.

Joshua Schpok, one of Ebert’s students, has used mathematical algorithms to design the software, which provides natural, intuitive controls.


"So an artist wouldn’t have to deal with scientific details – such as pressure and density, thermal convection, the percentage of dust and ice particles and all of these things that a meteorologist would look at – we have created a control system that an artist can actually manipulate," said Ebert, director of the Purdue University Rendering and Perceptualization Lab.

Behind the scenes, complex mathematical algorithms compute parameters needed to simulate such behavior as developing storm clouds and the effects of wind on clouds.

Although the software, which Schpok has named Swell, specifically produces animations of cloud formations, the same approach also could be used to design software for animations of any gaseous phenomena, Ebert said.

Findings about the research are detailed in a paper to be presented July 26 during the Symposium on Computer Animation in San Diego.

The amorphous nature of clouds makes them more difficult to animate than figures of people or objects. Another complicating factor is that to be realistic, the semitransparent animations must show the interior of a cloud, not just its general shape, Ebert said.

"You can sort of see through parts of the cloud and see the inside, which is useful if you want to, say, move a camera through a cloud or manipulate it rather than just look at its surface," Ebert said. "With most movie special effects, like the computer-generated female in ’Terminator 3,’ it’s an opaque object.

"Most things in computer games and computer graphics are done as hollow objects represented by approximations of a surface. With a cloud or other natural phenomena, like water or fog, you can see through the entirety of it, so you need to have the full interior detail, which is much more complex for modeling and image generation."

The animation software could soon be applied to commercial uses.

"I think it would make an excellent plug-in to some of the existing modelers," Ebert said. "They have systems to grow clouds now that do a pretty good job, but the problem is that it takes a few hours for the systems to produce the animation.

"If you are doing an animation, you tend to have to come back the next day to see what the actual sequence looks like. But with our system, you are interacting with the animation in real time, controlling it and changing how it evolves over time so you immediately see it and know what the results are.

"The fact that this is interactive means you could use it in video games, which now have very limited cloud-type effects."

Examples of the animations are available online.

The research was funded by the National Science Foundation and the U.S. Department of Energy.

The symposium in San Diego was organized by the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques, and the European Association for Computer Animation. The research paper was written by Schpok, Ebert, Charles Hansen, an associate professor of computer science at the University of Utah, and Joseph Simons, an undergraduate student in computer science at Purdue.

Schpok began working on the system about a year ago. The 22-year-old student from South Bend, Ind., recently graduated with two bachelor’s degrees, one each in mathematics and computer science. He will begin graduate studies next fall in Purdue’s School of Electrical and Computer Engineering and plans to improve the visualization software.

"I am continuing to expand it in different directions," Schpok said.

Purdue engineers want to increase the types of lighting reproduced in the animations. Examples include the effects of light from a setting sun and the "bluing" of clouds caused by the atmospheric scattering of light.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Joshua Schpok, (765) 494-5944, schpokj@purdue.edu

David S. Ebert, (765) 494-9064, ebertd@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030716.Ebert.clouds.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>