Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Purdue software promises better animation for movies, games


Researchers at Purdue University are creating interactive software that artists could use to make realistic animations of cloud formations, explosions, smoke, steam, fog and other gaseous phenomena for movies and video games.

Purdue University engineering student Joshua Schpok has created a software program, called Swell, that can be used by artists to create realistic animations of cloud formations for movies and video games. The same approach also could be used to design software for creating animations of any gaseous phenomena, such as explosions, smoke, steam and fog. This image is an example of a cloud from one of the animations. (Purdue University graphic/Joshua Schpok)

The same software might also be used by meteorologists to create accurate representations of quickly developing weather conditions. Because the software is interactive, it shows results immediately, whereas conventional programs might take hours to complete such animations, said David Ebert, an associate professor in Purdue’s School of Electrical and Computer Engineering.

Joshua Schpok, one of Ebert’s students, has used mathematical algorithms to design the software, which provides natural, intuitive controls.

"So an artist wouldn’t have to deal with scientific details – such as pressure and density, thermal convection, the percentage of dust and ice particles and all of these things that a meteorologist would look at – we have created a control system that an artist can actually manipulate," said Ebert, director of the Purdue University Rendering and Perceptualization Lab.

Behind the scenes, complex mathematical algorithms compute parameters needed to simulate such behavior as developing storm clouds and the effects of wind on clouds.

Although the software, which Schpok has named Swell, specifically produces animations of cloud formations, the same approach also could be used to design software for animations of any gaseous phenomena, Ebert said.

Findings about the research are detailed in a paper to be presented July 26 during the Symposium on Computer Animation in San Diego.

The amorphous nature of clouds makes them more difficult to animate than figures of people or objects. Another complicating factor is that to be realistic, the semitransparent animations must show the interior of a cloud, not just its general shape, Ebert said.

"You can sort of see through parts of the cloud and see the inside, which is useful if you want to, say, move a camera through a cloud or manipulate it rather than just look at its surface," Ebert said. "With most movie special effects, like the computer-generated female in ’Terminator 3,’ it’s an opaque object.

"Most things in computer games and computer graphics are done as hollow objects represented by approximations of a surface. With a cloud or other natural phenomena, like water or fog, you can see through the entirety of it, so you need to have the full interior detail, which is much more complex for modeling and image generation."

The animation software could soon be applied to commercial uses.

"I think it would make an excellent plug-in to some of the existing modelers," Ebert said. "They have systems to grow clouds now that do a pretty good job, but the problem is that it takes a few hours for the systems to produce the animation.

"If you are doing an animation, you tend to have to come back the next day to see what the actual sequence looks like. But with our system, you are interacting with the animation in real time, controlling it and changing how it evolves over time so you immediately see it and know what the results are.

"The fact that this is interactive means you could use it in video games, which now have very limited cloud-type effects."

Examples of the animations are available online.

The research was funded by the National Science Foundation and the U.S. Department of Energy.

The symposium in San Diego was organized by the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques, and the European Association for Computer Animation. The research paper was written by Schpok, Ebert, Charles Hansen, an associate professor of computer science at the University of Utah, and Joseph Simons, an undergraduate student in computer science at Purdue.

Schpok began working on the system about a year ago. The 22-year-old student from South Bend, Ind., recently graduated with two bachelor’s degrees, one each in mathematics and computer science. He will begin graduate studies next fall in Purdue’s School of Electrical and Computer Engineering and plans to improve the visualization software.

"I am continuing to expand it in different directions," Schpok said.

Purdue engineers want to increase the types of lighting reproduced in the animations. Examples include the effects of light from a setting sun and the "bluing" of clouds caused by the atmospheric scattering of light.

Writer: Emil Venere, (765) 494-4709,

Sources: Joshua Schpok, (765) 494-5944,

David S. Ebert, (765) 494-9064,

Purdue News Service: (765) 494-2096;

Emil Venere | Purdue News
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>