Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue software promises better animation for movies, games

17.07.2003


Researchers at Purdue University are creating interactive software that artists could use to make realistic animations of cloud formations, explosions, smoke, steam, fog and other gaseous phenomena for movies and video games.


Purdue University engineering student Joshua Schpok has created a software program, called Swell, that can be used by artists to create realistic animations of cloud formations for movies and video games. The same approach also could be used to design software for creating animations of any gaseous phenomena, such as explosions, smoke, steam and fog. This image is an example of a cloud from one of the animations. (Purdue University graphic/Joshua Schpok)



The same software might also be used by meteorologists to create accurate representations of quickly developing weather conditions. Because the software is interactive, it shows results immediately, whereas conventional programs might take hours to complete such animations, said David Ebert, an associate professor in Purdue’s School of Electrical and Computer Engineering.

Joshua Schpok, one of Ebert’s students, has used mathematical algorithms to design the software, which provides natural, intuitive controls.


"So an artist wouldn’t have to deal with scientific details – such as pressure and density, thermal convection, the percentage of dust and ice particles and all of these things that a meteorologist would look at – we have created a control system that an artist can actually manipulate," said Ebert, director of the Purdue University Rendering and Perceptualization Lab.

Behind the scenes, complex mathematical algorithms compute parameters needed to simulate such behavior as developing storm clouds and the effects of wind on clouds.

Although the software, which Schpok has named Swell, specifically produces animations of cloud formations, the same approach also could be used to design software for animations of any gaseous phenomena, Ebert said.

Findings about the research are detailed in a paper to be presented July 26 during the Symposium on Computer Animation in San Diego.

The amorphous nature of clouds makes them more difficult to animate than figures of people or objects. Another complicating factor is that to be realistic, the semitransparent animations must show the interior of a cloud, not just its general shape, Ebert said.

"You can sort of see through parts of the cloud and see the inside, which is useful if you want to, say, move a camera through a cloud or manipulate it rather than just look at its surface," Ebert said. "With most movie special effects, like the computer-generated female in ’Terminator 3,’ it’s an opaque object.

"Most things in computer games and computer graphics are done as hollow objects represented by approximations of a surface. With a cloud or other natural phenomena, like water or fog, you can see through the entirety of it, so you need to have the full interior detail, which is much more complex for modeling and image generation."

The animation software could soon be applied to commercial uses.

"I think it would make an excellent plug-in to some of the existing modelers," Ebert said. "They have systems to grow clouds now that do a pretty good job, but the problem is that it takes a few hours for the systems to produce the animation.

"If you are doing an animation, you tend to have to come back the next day to see what the actual sequence looks like. But with our system, you are interacting with the animation in real time, controlling it and changing how it evolves over time so you immediately see it and know what the results are.

"The fact that this is interactive means you could use it in video games, which now have very limited cloud-type effects."

Examples of the animations are available online.

The research was funded by the National Science Foundation and the U.S. Department of Energy.

The symposium in San Diego was organized by the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques, and the European Association for Computer Animation. The research paper was written by Schpok, Ebert, Charles Hansen, an associate professor of computer science at the University of Utah, and Joseph Simons, an undergraduate student in computer science at Purdue.

Schpok began working on the system about a year ago. The 22-year-old student from South Bend, Ind., recently graduated with two bachelor’s degrees, one each in mathematics and computer science. He will begin graduate studies next fall in Purdue’s School of Electrical and Computer Engineering and plans to improve the visualization software.

"I am continuing to expand it in different directions," Schpok said.

Purdue engineers want to increase the types of lighting reproduced in the animations. Examples include the effects of light from a setting sun and the "bluing" of clouds caused by the atmospheric scattering of light.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Joshua Schpok, (765) 494-5944, schpokj@purdue.edu

David S. Ebert, (765) 494-9064, ebertd@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030716.Ebert.clouds.html

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>