Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystal structures light the way to optical microchip


A new class of microscopic crystal structures developed at the University of Toronto is bringing high bandwidth optical microchips one step closer to efficient, large-scale fabrication. The structures, known as photonic band gap (PBG) materials, could usher in an era of speedy computer and telecommunications networks that use light instead of electrons.

“This will be a tremendous breakthrough,” says Sajeev John, a professor in U of T’s Department of Physics and co-investigator of the study published in the June 7-13 issue of Physical Review Letters. “It’s basically a whole new set of architectures for manufacturing nearly perfect photonic band gap materials and will provide an enormous increase in the available bandwidth for the optical microchip.”

John and his team devised a photonic band gap blueprint that can be made with nanometre-scale precision by bombarding it with x-rays. The x-rays pass through a gold “mask” with an array of holes, removing portions of a polymer template below. Glass is deposited to fill in the holes and the remaining polymer burned away with heat. Silicon is then deposited throughout the void regions of the glass template and the glass finally removed with chemicals, leaving behind a pure silicon photonic band gap material.

The study was co-written with physics graduate student Ovidiu Toader and Mona Berciu, a physics professor at the University of British Columbia, and funded by the Natural Sciences and Engineering Research Council of Canada. CONTACT: Professor Sajeev John, Department of Physics, 416-978-3459, or Nicolle Wahl, U of T public affairs, 416-978-6974,

Nicolle Wahl | U of T

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>