Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An image of success: BU computer scientist takes aim at improved indexing and understanding of digital information

12.06.2003


Inflation’s got nothing to do with it. Since the beginning of time, a picture has always been worth more than a thousand words. But in this age of information proliferation, that reality is the taproot of a vexing problem that Zhongfei "Mark" Zhang, an assistant professor of computer science at Binghamton University, is determined to help solve.




From personal and commercial digital image libraries and multimedia databases to data mining programs and high-tech security and defense surveillance, our need for more efficient and more effective ways to index, retrieve, manipulate and understand complex video or images is pressing. Verbal cues--whether keywords or multiple page abstracts--are just not cut out for the job and neither coercion nor clichés can change that fact, Zhang said.

"It’s very difficult to capture the entire content of a picture with any number of words," Zhang said. "And you certainly can’t capture an image with a single word or with a few key words. In terms of effectiveness, this is not a good approach."


Take, for example, a picture in which a couple stands in front of their house. Behind their house is a large palm tree. Several other shrubs, trees and plants are in the front yard, which is enclosed by a fence. In the background, there are hills and clouds. Imagine what the people are wearing, what they are doing, that one is white and one is black, and the problem comes into sharper focus.

"Looking at such an image, what are the keywords?" Zhang asked. "Couple? Man? Woman? House? Palm? Fence? It’s almost impossible to use words to describe the net content of the image, including its shapes, colors and textures. It takes the power of extensive computer analysis and processing to manage this kind of task.

Still, so far, there is no commercial product available that can index large-scale imagery or non-textual databases in their own modality. As far as I know, all or almost all commercially available multimedia database programs work at the keyword level."

That’s why Zhang is involved in a number of research projects that seek to understand and optimize the indexing, retrieval and use of images based on algorithms that rely on the semantics of the images themselves. His work is funded by industry and defense agencies with grants that are expected to reach more than $200,000 by year’s end.

An expert in image understanding and multimedia indexing and retrieval, Zhang has worked in the recent past on image indexing and retrieval issues with Kodak Corp., and on issues of multimedia indexing and retrieval of patient records with Upstate Medical Center. Those active collaborations evaporated as funding for the projects dried up, but along with his current funded research projects, Zhang continues to pursue the research as well as another currently unfunded project: facial recognition. His progress on all fronts is impressive.

Earlier this month Zhang filed an invention disclosure on his prototype system for improved content-based image retrieval with his student Ruofei Zhang. The system involves the use of a novel fuzzy logic-based indexing scheme, as well as a novel user relevance feedback algorithm. Based on semantic similarity within the images themselves, it can rapidly and effectively identify and retrieve images from very large data bases or the Internet. The system which Zhang has dubbed "FAST" --for Fast And Semantic-Tailored image retrieval-- also "learns" from user feedback about the relevance of images retrieved. In other words, of the images it returns, you tell it which ones bore the closest resemblance to what you were looking for, and it continues to improve its performance with each new search based on your feedback.

Zhang has already been approached about the prototype by the American Museum of Natural History in New York City, where databases of hundreds of thousands of images could become more accessible through better indexing and retrieval.

He is also currently working with funding from the US Air Force on a project to develop a system to automatically recognize independent motion directly in the compressed surveillance video, particularly video shot from unmanned surveillance aircraft such as the Predator. (See related story.)

When video is shot from a moving plane, extensive analysis is needed to detect which if any elements in a given frame or set of frames are moving independently. Currently that analysis requires decompression of compressed video followed by tedious inspection of large, archived image databases by human image analysts.

Zhang is developing a technology that will automatically detect independent motion in compressed video streams from an archived database or even directly from the remote sensor hook up in real time. It will improve by orders of magnitude on the efficiency of the current process.

"If you have a still camera and you want to detect motion, all you have to do is detect the difference between two individual frames," Zhang said. "However, in many scenarios, especially in military surveillance, typically the camera is also in motion, so everything is in motion from frame to frame. We have developed a preliminary prototype system to robustly and automatically detect independent motion directly from the compressed video domain."

But Zhang’s most challenging project to date might be his new work on automatic model generation in an area called information fusion. Preliminary work on this project was funded jointly by the U.S. Air Force and the National Institute of Justice. The project aims at automatic detection of money laundering schemes.

"This is a completely new research problem," Zhang said. "I used to work on computer vision and image understanding focusing on imagery and video data. Now my research horizon is extending to incorporate the area of data mining in general, and in this project we are focusing on the text data modality in particular."

To investigate money laundering crimes, Zhang’s research team has access to a significant amount of textual data, ranging from court reports, financial transaction records and bank statements to personal communications and news reports.

Zhang and his students are developing robust data mining techniques to automatically build up money laundering crime models from scanning such large collections of textual documents. A generated model indicates those involved in a specific money laundering crime, and helps detail the relationships between the individuals involved in the crime (e.g., who is in charge of the group), as well as all the activities the individuals have engaged in as part of the crime.

"Current investigation techniques require at least several months’ effort to build up the model because the model is generated manually," Zhang said. The prototype system Zhang’s group has developed only takes a few minutes to generate a money laundering crime model and so holds great promise in future money laundering investigation, prosecution, and prevention.

"The government is extremely interested in automating, or at least semi-automating this investigation process to significantly save the man power in law enforcement agencies and to significantly expedite the crime investigation and prosecution time," Zhang said.

"Considering the threat of global terrorism, preventing money laundering becomes ever more important to stop the financing of terrorist activities," Zhang said, "and I can tell you, though, that this research has great potential."

Susan E. Barker | Binghamton University
Further information:
http://research.binghamton.edu/discovere/june2003/TopStories/MZhang.htm

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>