Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoresists for 157nm Exposure Technology

11.06.2003


Infineon Technologies (FSE/NYSE: IFX) and Clariant Corporation’s AZ Electronic Materials business (Somerville, N.J., USA) have signed an agreement to jointly develop photoresists for 157 nm exposure technology. The goal is to accelerate qualification of this technology for volume production.



The photoresist materials to be developed in this project will specifically enable Infineon to qualify the 157 nm technology for producing 55 nm structures in DRAM (dynamic random access memory) semiconductor chip production.

The International Technology Roadmap for Semiconductors, which describes the technology and materials needed for future chip generations, predicts that 55 nm structures will be in volume production beginning in 2007. One of the mainstream candidate technologies for achieving these dimensions is 157 nm lithography, a technology that uses fluorine molecular lasers emitting at the vacuum ultraviolet wavelength of 157 nm.


To accelerate the photoresist development work, the companies will draw upon their joint chemical research and development capabilities and use Infineon’s most advanced lithographic equipment in Dresden, Germany. Infineon will have one of the earliest exposure tools available for 157 nm pilot production. Wilhelm Beinvogl, Infineon’s chief technology officer for memory products, says early access to such a tool is integral to accelerating the material and process development.

“Because of the research and development capabilities and advanced processing equipment that this development project brings together, our companies are confident we can help make 157 nm photoresist available for the timely introduction of the 55 nm node,” says Clariant’s Dr. Ralph Dammel, director of technology for 193 nm and 157 nm products.

Photoresists are light-sensitive materials that define the small patterns on the various layers of an integrated circuit. Lithographic technologies have evolved rapidly over the past few decades. Currently lithography at the 193 nm wavelength of light is entering volume production. The 193 nm wavelength has been introduced at Infineon to define sub-130 nm patterns. The157 nm wavelength is predicted to be the final usable optical wavelength. It is also predicted that non-optical “Next Generation Lithography” methods will be needed to produce even smaller structures. The 157 nm technology bridges the gap between 193 nm and Next Generation Lithography.

About Clariant AZ Electronic Materials

The AZ Electronic Materials business of Clariant is a worldwide leader in electronic materials for the semiconductor, recording head, and flat panel display markets. Clariant AZ Electronic Materials provides a total customer solution with a broad line of photoresists, antireflective coatings, developers, ancillary chemicals, dielectric materials, and polyimides. Clariant is a global leader in the production of fine and specialty chemicals with some 29,000 employees and annual sales of about CHF 10 billion. The Group operates worldwide with more than 100 companies on five continents. It is domiciled and headquartered in Muttenz near Basel/Switzerland. The products and services of the five divisions Textile, Leather & Paper Chemicals, Pigments & Additives, Masterbatches, Functional Chemicals and Life Science & Electronic Chemicals are based on innovative specialty chemicals. These play a decisive role in the clients’ manufacturing processes and upgrade their end products.

About Infineon

Infineon Technologies AG, Munich, Germany, offers semiconductor and system solutions for the automotive and industrial sectors, for applications in the wired communications markets, secure mobile solutions as well as memory products. With a global presence, Infineon operates in the US from San Jose, CA, in the Asia-Pacific region from Singapore and in Japan from Tokyo. In fiscal year 2002 (ending September), the company achieved sales of Euro 5.21 billion with about 30,400 employees worldwide. Infineon is listed on the DAX index of the Frankfurt Stock Exchange and on the New York Stock Exchange (ticker symbol: IFX).

Contacts at Clariant
157 nm Technology Contact
Dr. Ralph Dammel
E-mail: ralph.dammel@clariant.com

Reiner Schoenrock | Infineon Technologies AG
Further information:
http://www.clariant.com
http://www.azresist.com
http://www.infineon.com

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>