Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBM, Infineon Develop Most Advanced MRAM Technology to Date - Develop highest density revolutionary memory technology

10.06.2003


Joint news release of Infineon Technologies and IBM

IBM and Infineon Technologies AG (FSE/NYSE: IFX) today announced they have developed the most advanced Magnetic Random Access Memory (MRAM) technology to date by integrating magnetic memory components into a high-performance logic base.

Today’s announcement could accelerate the commercialization of MRAM, a breakthrough memory technology with the potential to begin replacing some of today’s memory technologies as early as 2005. MRAM could lead to ‘instant on’ computers, allowing users to turn computers on and off as quickly as a light switch.



At the VLSI Symposia taking place here this week, IBM and Infineon are presenting their high-speed 128Kbit MRAM core. It is fabricated with a 0.18 micron logic-based process technology, the smallest size reported to date for MRAM technology. This small base enabled IBM and Infineon to incorporate the smallest MRAM memory-cell size of 1.4 square microns, which is about 20 million times smaller than the average pencil eraser top. By accurately patterning the magnetic structures within this small cell, IBM and Infineon researchers were able to control the memory reading and writing operations.

A memory technology that uses magnetic, rather than electronic, charges to store bits of data, MRAM could significantly improve portable computing products by storing more information, accessing it faster and using less battery power than the electronic memory used today. MRAM combines the best features of today’s common memory technologies: the storage capacity and low-cost of Dynamic RAM (DRAM), the high speed of Static RAM (SRAM), and the non-volatility of flash memory. Since MRAM retains information when power is turned off, products like personal computers using it could start up instantly, without waiting for software to “boot up”.

IBM’s MRAM work complements its pioneering and ongoing development of advanced embedded DRAM memory, which is commercially available today and offers advantages over traditional SRAM.

“MRAM has the potential to become the universal memory technology of the future,” said Dr T. C. Chen, VP Science and Technology, IBM Research. “This breakthrough demonstrates that MRAM technology is rapidly maturing and could fundamentally alter the entire memory marketplace within the next few years.”

“Nonvolatile memory technologies like MRAM will play a major role in technology lifestyle solutions and we want to be the number one semiconductor company in this area by having a product demonstrator jointly developed with IBM available early 2004. Together with Altis Semiconductor, a joint venture of IBM and Infineon, we will pave the way for production readiness of MRAM as early as 2005," said Dr. Wilhelm Beinvogl, CTO of the Memory Product Division, Infineon.

Detailed benefits of MRAM

The non-volatility attribute of MRAM carries significant implications, especially for mobile computing devices. Memory technologies like DRAM and SRAM require constant electrical power to retain stored data. When power is cut off, all data in memory is lost. A laptop computer, for example, works from a copy of its software stored in memory. When turned on, a working version of the software is copied from the hard-disk drive into memory, so the user can access it quickly. Every time the power is turned off and then back on, the process must start over. By using MRAM, the laptop could work more like other electronic devices such as a television or radio: turn the power on and the machine jumps almost instantly to life with settings just as you had left them.

Non-volatility can save power as well. Since MRAM will not need constant power to keep the data intact, it could consume much less than current random access memory technologies, extending the battery life of cell phones, handheld devices, laptops and other battery powered products.

The high-speed attribute of MRAM means that electronic products can more quickly access data, and MRAM’s high-density means greater storage capacity.

IBM and Infineon MRAM developments

IBM Research pioneered the development of tiny, thin-film magnetic structures as early as 1974. In the late 1980s, IBM scientists made a string of key discoveries about the "giant magnetoresistive" effect in thin-film structures. These developments enabled IBM to create the first super-sensitive GMR read/write heads for hard-disk drives, stimulating dramatic increases in data density. Altering many of the GMR materials enabled IBM scientists to make the "magnetic tunnel junctions" that are at the heart of MRAM.

IBM and Infineon have more than 10 years experience with successful joint development of new chip technologies, including traditional Dynamic RAM (DRAM), logic and embedded-DRAM technologies. In November 2000, they established a joint MRAM development program. By combining IBM technology with Infineon’s expertise in creating very high-density semiconductor memory, the companies believe MRAM products could be commercially available as early as 2005.

About IBM Research & Microelectronics Divisions

IBM Research is the world’s largest information technology research organization, with more than 3,000 scientists and engineers at eight labs in six countries. IBM has produced more research breakthroughs than any other company in the IT industry. IBM’s early work with MRAM has been conducted in cooperation with the U.S. Defense Advanced Research Agency (DARPA). For more information on IBM Research, visit http://www.research.ibm.com.

IBM Microelectronics is a key contributor to IBM’s role as the world’s premier information technology supplier. IBM Microelectronics develops, manufactures and markets state-of-the-art semiconductor, ASIC and interconnect technologies, products and services. Its superior integrated solutions can be found in many of the world’s best-known electronic brands.

IBM is a recognized innovator in the chip industry, having been first with advances like more power-efficient copper wiring in place of aluminum, faster silicon-on-insulator (SOI) and silicon germanium transistors, and improved low-k dielectric insulation between chip wires. These and other innovations have contributed to IBM’s standing as the number one U.S. patent holder for ten consecutive years. More information about IBM Microelectronics can be found at: http://www.ibm.com/chips.

About Infineon

Infineon Technologies AG, Munich, Germany, offers semiconductor and system solutions for the automotive and industrial sectors, for applications in the wired communications markets, secure mobile solutions as well as memory products. With a global presence, Infineon operates in the US from San Jose, CA, in the Asia-Pacific region from Singapore and in Japan from Tokyo. In fiscal year 2002 (ending September), the company achieved sales of Euro 5.21 billion with about 30,400 employees worldwide. Infineon is listed on the DAX index of the Frankfurt Stock Exchange and on the New York Stock Exchange.

Reiner Schoenrock | Infineon Technologies AG
Further information:
http://www.infineon.com

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>