Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanoscale Device Reveals Behavior of Individual Electrons

04.06.2003


Laptop computers can generate enough heat that, in rare cases, they actually catch fire. While engineers have a great grasp of how to control electrical charge in circuits, they have a hard time getting rid of the heat created by flowing electrons. What’s missing is a fundamental understanding of how individual electrons generate heat.



A new device developed by University of Wisconsin-Madison Electrical and Computer Engineering Associate Professor Robert Blick promises to change that. In addition, it will provide insights into harnessing quantum forces for communication and computing.

Blick, along with his graduate student Eva Hoehberger and colleague Werner Wegscheider, developed something similar to an incredibly small trampoline for bouncing individual electrons. It operates as an artificial atom, or a membrane, suspended over a semiconductor cavity.


Featured on the cover of the June 9 issue of Applied Physics Letters, the tool will allow researchers to study for the first time, in detail, the influence of heat dissipation on single electron transport in these transistors.

The device, just 100 nanometers wide or about one ten-millionth of an inch, looks and acts, in a way, like a really small guitar. A conventional guitar string vibrates at several thousand cycles per second, but if you reduced the size to several hundred nanometers, the string would vibrate at speeds in the gigahertz regime, or around a billion cycles per second.

On that scale, the movement in the string, or suspended membrane in the case of this new device, is incredibly small. Blick says the effects of heat dissipation will show up as vibrations of the suspended artificial atoms. This motion causes a change in voltage that researchers can measure.

"Our system is comprised with many gates so that we can study the full variety of electronic systems starting with two-dimensional electron flows, which is common in many transistors these days," Blick says. "We can then reduce that to a channel where electrons flow in only one dimension like a string of electrons, and finally we can tune the device to a zero-dimensional state, which is the so-called single-electron transistor. We can bounce around single electrons, very controlled, and see how they spread energy in these very thin membranes."

Blick says understanding energy transfer at these levels offers very practical, near-term benefits for chip manufacturers. The device itself is constructed of semiconductor materials and, at 100 nanometers, its size and fabrication represent the future of the industry. Lessons learned from this tool could allow engineers to optimize existing technology currently limited by heat dissipation.

In the longer term, the tool could reveal important secrets that allow researchers to exploit the power of quantum computing and communication.

In a conventional computer, the presence of a group of electrons shows up as a negative charge and represents the "zero state" in binary logic, called a bit. When that charge is missing, the "one state" is represented. But a quantum computer deals with the quantum mechanics of electrons, which can be used to define so-called quantum bits or qubits. Unlike bits, these qubits can exist in more than one state at once. This frees quantum computers to calculate all the possible solutions to a complex problem simultaneously, rather than running through them one-by-one like their slower, serial counterparts.

Key to developing a practical quantum computer, however, involves understanding exactly what represents information and how to get it out of the device.

Blick’s system, when tuned to the zero-dimension state, will add to this understanding - it will allow researchers to observe an individual electron near the qubit level as it approaches what’s known as the Heisenberg uncertainty principle. This law of nature holds that as soon as you try to exactly determine the whereabouts of a quantum mechanical particle, you can no longer be certain of where it is going, since any action to measure the particle changes the particle’s condition.

"An electron spread out as a wave, as a fermionic particle, has a scale of some five nanometers and this is exactly what we can address with our device." Blick says. "We can study information processing on the quantum level and see whether the Heisenberg principle gives us a real obstacle, or whether we can find ways around it by using quantum-nondemolition techniques."

Robert Blick | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8710

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>