Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanoscale Device Reveals Behavior of Individual Electrons

04.06.2003


Laptop computers can generate enough heat that, in rare cases, they actually catch fire. While engineers have a great grasp of how to control electrical charge in circuits, they have a hard time getting rid of the heat created by flowing electrons. What’s missing is a fundamental understanding of how individual electrons generate heat.



A new device developed by University of Wisconsin-Madison Electrical and Computer Engineering Associate Professor Robert Blick promises to change that. In addition, it will provide insights into harnessing quantum forces for communication and computing.

Blick, along with his graduate student Eva Hoehberger and colleague Werner Wegscheider, developed something similar to an incredibly small trampoline for bouncing individual electrons. It operates as an artificial atom, or a membrane, suspended over a semiconductor cavity.


Featured on the cover of the June 9 issue of Applied Physics Letters, the tool will allow researchers to study for the first time, in detail, the influence of heat dissipation on single electron transport in these transistors.

The device, just 100 nanometers wide or about one ten-millionth of an inch, looks and acts, in a way, like a really small guitar. A conventional guitar string vibrates at several thousand cycles per second, but if you reduced the size to several hundred nanometers, the string would vibrate at speeds in the gigahertz regime, or around a billion cycles per second.

On that scale, the movement in the string, or suspended membrane in the case of this new device, is incredibly small. Blick says the effects of heat dissipation will show up as vibrations of the suspended artificial atoms. This motion causes a change in voltage that researchers can measure.

"Our system is comprised with many gates so that we can study the full variety of electronic systems starting with two-dimensional electron flows, which is common in many transistors these days," Blick says. "We can then reduce that to a channel where electrons flow in only one dimension like a string of electrons, and finally we can tune the device to a zero-dimensional state, which is the so-called single-electron transistor. We can bounce around single electrons, very controlled, and see how they spread energy in these very thin membranes."

Blick says understanding energy transfer at these levels offers very practical, near-term benefits for chip manufacturers. The device itself is constructed of semiconductor materials and, at 100 nanometers, its size and fabrication represent the future of the industry. Lessons learned from this tool could allow engineers to optimize existing technology currently limited by heat dissipation.

In the longer term, the tool could reveal important secrets that allow researchers to exploit the power of quantum computing and communication.

In a conventional computer, the presence of a group of electrons shows up as a negative charge and represents the "zero state" in binary logic, called a bit. When that charge is missing, the "one state" is represented. But a quantum computer deals with the quantum mechanics of electrons, which can be used to define so-called quantum bits or qubits. Unlike bits, these qubits can exist in more than one state at once. This frees quantum computers to calculate all the possible solutions to a complex problem simultaneously, rather than running through them one-by-one like their slower, serial counterparts.

Key to developing a practical quantum computer, however, involves understanding exactly what represents information and how to get it out of the device.

Blick’s system, when tuned to the zero-dimension state, will add to this understanding - it will allow researchers to observe an individual electron near the qubit level as it approaches what’s known as the Heisenberg uncertainty principle. This law of nature holds that as soon as you try to exactly determine the whereabouts of a quantum mechanical particle, you can no longer be certain of where it is going, since any action to measure the particle changes the particle’s condition.

"An electron spread out as a wave, as a fermionic particle, has a scale of some five nanometers and this is exactly what we can address with our device." Blick says. "We can study information processing on the quantum level and see whether the Heisenberg principle gives us a real obstacle, or whether we can find ways around it by using quantum-nondemolition techniques."

Robert Blick | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8710

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>