Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanoscale Device Reveals Behavior of Individual Electrons

04.06.2003


Laptop computers can generate enough heat that, in rare cases, they actually catch fire. While engineers have a great grasp of how to control electrical charge in circuits, they have a hard time getting rid of the heat created by flowing electrons. What’s missing is a fundamental understanding of how individual electrons generate heat.



A new device developed by University of Wisconsin-Madison Electrical and Computer Engineering Associate Professor Robert Blick promises to change that. In addition, it will provide insights into harnessing quantum forces for communication and computing.

Blick, along with his graduate student Eva Hoehberger and colleague Werner Wegscheider, developed something similar to an incredibly small trampoline for bouncing individual electrons. It operates as an artificial atom, or a membrane, suspended over a semiconductor cavity.


Featured on the cover of the June 9 issue of Applied Physics Letters, the tool will allow researchers to study for the first time, in detail, the influence of heat dissipation on single electron transport in these transistors.

The device, just 100 nanometers wide or about one ten-millionth of an inch, looks and acts, in a way, like a really small guitar. A conventional guitar string vibrates at several thousand cycles per second, but if you reduced the size to several hundred nanometers, the string would vibrate at speeds in the gigahertz regime, or around a billion cycles per second.

On that scale, the movement in the string, or suspended membrane in the case of this new device, is incredibly small. Blick says the effects of heat dissipation will show up as vibrations of the suspended artificial atoms. This motion causes a change in voltage that researchers can measure.

"Our system is comprised with many gates so that we can study the full variety of electronic systems starting with two-dimensional electron flows, which is common in many transistors these days," Blick says. "We can then reduce that to a channel where electrons flow in only one dimension like a string of electrons, and finally we can tune the device to a zero-dimensional state, which is the so-called single-electron transistor. We can bounce around single electrons, very controlled, and see how they spread energy in these very thin membranes."

Blick says understanding energy transfer at these levels offers very practical, near-term benefits for chip manufacturers. The device itself is constructed of semiconductor materials and, at 100 nanometers, its size and fabrication represent the future of the industry. Lessons learned from this tool could allow engineers to optimize existing technology currently limited by heat dissipation.

In the longer term, the tool could reveal important secrets that allow researchers to exploit the power of quantum computing and communication.

In a conventional computer, the presence of a group of electrons shows up as a negative charge and represents the "zero state" in binary logic, called a bit. When that charge is missing, the "one state" is represented. But a quantum computer deals with the quantum mechanics of electrons, which can be used to define so-called quantum bits or qubits. Unlike bits, these qubits can exist in more than one state at once. This frees quantum computers to calculate all the possible solutions to a complex problem simultaneously, rather than running through them one-by-one like their slower, serial counterparts.

Key to developing a practical quantum computer, however, involves understanding exactly what represents information and how to get it out of the device.

Blick’s system, when tuned to the zero-dimension state, will add to this understanding - it will allow researchers to observe an individual electron near the qubit level as it approaches what’s known as the Heisenberg uncertainty principle. This law of nature holds that as soon as you try to exactly determine the whereabouts of a quantum mechanical particle, you can no longer be certain of where it is going, since any action to measure the particle changes the particle’s condition.

"An electron spread out as a wave, as a fermionic particle, has a scale of some five nanometers and this is exactly what we can address with our device." Blick says. "We can study information processing on the quantum level and see whether the Heisenberg principle gives us a real obstacle, or whether we can find ways around it by using quantum-nondemolition techniques."

Robert Blick | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8710

More articles from Information Technology:

nachricht Goodbye, login. Hello, heart scan
26.09.2017 | University at Buffalo

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>