Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software helps teams deal with information overload

04.06.2003


Penn State researchers have developed new software that can help decision-making teams in combat situations or homeland security handle information overload by inferring teams’ information needs and delivering relevant data from computer-generated reports.


The agent software called CAST (Collaborative Agents for Simulating Teamwork) highlights relevant data. This helps improve a team’s decision-making process as well as enhances members’ collaboration.

"This version of CAST provides support for teams by anticipating what information team members will need, finding commonalities in the available information and determining how that information should be processed," said John Yen, professor of information sciences and technology. "Decision making is made easier because the software offers only relevant data."

CAST was originally developed by a team of researchers at Texas A&M where Yen was a key figure. Now a faculty member in Penn State’s School of Information Sciences and Technology (IST), Yen heads the Research Laboratory for Team-based Agents at the University while continuing to collaborate with Richard Volz and Michael Miller, from Texas A&M, on the software.



Initially, CAST was developed to facilitate or train human teams in the best ways to collaborate on and perform certain tasks. The research has been funded through a Department of Defense MURI (Multidisciplinary Research Program of the University Research Initiative) grant to Texas A&M, Wright State University and Penn State .

With this research, the research team is taking smart software into a new direction involving what he calls "shared mental models" to support team activities or train teams. These can include shared team goals, shared assumptions about the problem, and shared knowledge about the team structure and process.

"The inspiration came from psychologists studying the behavior of human teams who were required to process incoming information under the pressure of time constraints," Yen said.

Without being directed, members of higher-performing teams were able to provide each other with needed information. This enabled more timely and better decisions, he added.

CAST does this, too. "The more time-critical the environment in which a team operates, the more effectively it needs to process information," Yen said. "A computer program that acts as a team member may be more efficient in processing information than a human teammate."

The Penn State researcher and his collaborators see CAST as a promising technology for supporting military officers who receive from ground sensors and satellites as many as 600,000 reports every hour. Without the right information, the wrong decision can be made in the battle space, Yen said.

The software, which can be customized, also can help officers adapt more quickly to changing battlefield conditions.

CAST also could be used to track potential terrorist threats or infectious diseases - any domain where information needs to be exchanged quickly or commonalities found among different cases, Yen said.

Yen had been scheduled to present this research as a keynote speaker at the second International Conference on Active Media Technology in the People’s Republic of China, May 29-31. The conference was canceled due to SARS. The paper, "On Modeling and Simulating Agent Teamwork in CAST," appears in the conference’s proceedings released by World Scientific Publishing Company.


###
The authors from Penn State are Yen; Xiacong Fan, a post doctoral scholar; and IST doctoral students Shuang Sun, Ray Wang and Cong Chen. Kaivan Kamali is a doctoral student in Computer Science and Engineering. Volz and Miller, Texas A&M, also were co-authors

Margaret Hopkins | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>