Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New software helps teams deal with information overload


Penn State researchers have developed new software that can help decision-making teams in combat situations or homeland security handle information overload by inferring teams’ information needs and delivering relevant data from computer-generated reports.

The agent software called CAST (Collaborative Agents for Simulating Teamwork) highlights relevant data. This helps improve a team’s decision-making process as well as enhances members’ collaboration.

"This version of CAST provides support for teams by anticipating what information team members will need, finding commonalities in the available information and determining how that information should be processed," said John Yen, professor of information sciences and technology. "Decision making is made easier because the software offers only relevant data."

CAST was originally developed by a team of researchers at Texas A&M where Yen was a key figure. Now a faculty member in Penn State’s School of Information Sciences and Technology (IST), Yen heads the Research Laboratory for Team-based Agents at the University while continuing to collaborate with Richard Volz and Michael Miller, from Texas A&M, on the software.

Initially, CAST was developed to facilitate or train human teams in the best ways to collaborate on and perform certain tasks. The research has been funded through a Department of Defense MURI (Multidisciplinary Research Program of the University Research Initiative) grant to Texas A&M, Wright State University and Penn State .

With this research, the research team is taking smart software into a new direction involving what he calls "shared mental models" to support team activities or train teams. These can include shared team goals, shared assumptions about the problem, and shared knowledge about the team structure and process.

"The inspiration came from psychologists studying the behavior of human teams who were required to process incoming information under the pressure of time constraints," Yen said.

Without being directed, members of higher-performing teams were able to provide each other with needed information. This enabled more timely and better decisions, he added.

CAST does this, too. "The more time-critical the environment in which a team operates, the more effectively it needs to process information," Yen said. "A computer program that acts as a team member may be more efficient in processing information than a human teammate."

The Penn State researcher and his collaborators see CAST as a promising technology for supporting military officers who receive from ground sensors and satellites as many as 600,000 reports every hour. Without the right information, the wrong decision can be made in the battle space, Yen said.

The software, which can be customized, also can help officers adapt more quickly to changing battlefield conditions.

CAST also could be used to track potential terrorist threats or infectious diseases - any domain where information needs to be exchanged quickly or commonalities found among different cases, Yen said.

Yen had been scheduled to present this research as a keynote speaker at the second International Conference on Active Media Technology in the People’s Republic of China, May 29-31. The conference was canceled due to SARS. The paper, "On Modeling and Simulating Agent Teamwork in CAST," appears in the conference’s proceedings released by World Scientific Publishing Company.

The authors from Penn State are Yen; Xiacong Fan, a post doctoral scholar; and IST doctoral students Shuang Sun, Ray Wang and Cong Chen. Kaivan Kamali is a doctoral student in Computer Science and Engineering. Volz and Miller, Texas A&M, also were co-authors

Margaret Hopkins | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>