Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Techniques for Computing Google-Style Web Rankingsup to Five Times Faster

14.05.2003


Speed-up may make "topic-sensitive" page rankings feasible

Computer science researchers at Stanford University have developed several new techniques that together may make it possible to calculate Web page rankings as used in the Google search engine up to five times faster. The speed-ups to Google’s method may make it realistic to calculate page rankings personalized for an individual’s interests or customized to a particular topic.

The Stanford team includes graduate students Sepandar Kamvar and Taher Haveliwala, noted numerical analyst Gene Golub and computer science professor Christopher Manning. They will present their first paper at the Twelfth Annual World Wide Web Conference (WWW2003) in Budapest, Hungary, May 20-24, 2003. The work was supported by the National Science Foundation (NSF), an independent federal agency that supports fundamental research and education in all fields of science and engineering.

Computing PageRank, the ranking algorithm behind the Google search engine, for a billion Web pages can take several days. Google currently ranks and searches 3 billion Web pages. Each personalized or topic-sensitive ranking would require a separate multi-day computation, but the payoff would be less time spent wading through irrelevant search results. For example, searching a sports-specific Google site for "Giants" would give more importance to pages about the New York or San Francisco Giants and less importance to pages about Jack and the Beanstalk.

"This work is a wonderful example of how NSF support for basic computer science research, including applied mathematics and algorithm research, has impacts in daily life," said NSF program officer Maria Zemankova. In the mid-1990s, an NSF digital library project and an NSF graduate fellowship also supported Stanford graduate students Larry Page and Sergey Brin while they developed what would become the Google search engine.

To speed up PageRank, the Stanford team developed a trio of techniques in numerical linear algebra. First, in the WWW2003 paper, they describe so-called "extrapolation" methods, which make some assumptions about the Web’s link structure that aren’t true, but permit a quick and easy computation of PageRank. Because the assumptions aren’t true, the PageRank isn’t exactly correct, but it’s close and can be refined using the original PageRank algorithm. The Stanford researchers have shown that their extrapolation techniques can speed up PageRank by 50 percent in realistic conditions and by up to 300 percent under less realistic conditions.

A second paper describes an enhancement, called "BlockRank," which relies on a feature of the Web’s link structure-a feature that the Stanford team is among the first to investigate and exploit. Namely, they show that approximately 80 percent of the pages on any given Web site point to other pages on the same site. As a result, they can compute many single-site PageRanks, glue them together in an appropriate manner and use that as a starting point for the original PageRank algorithm. With this technique, they can realistically speed up the PageRank computation by 300 percent.

Finally, the team notes in a third paper that the rankings for some pages are calculated early in the PageRank process, while the rankings of many highly rated pages take much longer to compute. In a method called "Adaptive PageRank," they eliminate redundant computations associated with those pages whose PageRanks finish early. This speeds up the PageRank computation by up to 50 percent.

"Further speed-ups are possible when we use all these methods," Kamvar said. "Our preliminary experiments show that combining the methods will make the computation of PageRank up to a factor of five faster. However, there are still several issues to be solved. We’re closer to a topic-based PageRank than to a personalized ranking."

The complexities of a personalized ranking would require even greater speed-ups to the PageRank calculations. In addition, while a faster algorithm shortens computation time, the issue of storage remains. Because the results from a single PageRank computation on a few billion Web pages require several gigabytes of storage, saving a personalized PageRank for many individuals would rapidly consume vast amounts of storage. Saving a limited number of topic-specific PageRank calculations would be more practical.

The reason for the expensive computation and storage requirements lies in how PageRank generates the rankings that have led to Google’s popularity. Unlike page-ranking methods that rate each page separately, PageRank bases each page’s "importance" on the number and importance of pages that link to the page.

Therefore, PageRank must consider all pages at the same time and can’t easily omit pages that aren’t likely to be relevant to a topic. It also means that the faster method will not affect how quickly Google presents results to users’ searches, because the rankings are computed in advance and not at the time a search is requested.

The Stanford team’s conference paper and technical reports on enhancing the PageRank algorithm, as well as the original paper describing the PageRank method, are available on the Stanford Database Group’s Publication Server (http://dbpubs.stanford.edu/).

David Hart | National Science Foundation
Further information:
http://www.stanford.edu/~sdkamvar/research.html
http://www.www2003.org/
http://dbpubs.stanford.edu

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>