Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infineon and Micron announce RLDRAM II Specification

12.05.2003


Next-Generation, High-bandwidth Memory Architecture Targets Communication Data Storage Applications



Infineon Technologies AG and Micron Technology, Inc., today announced the release of the complete specification for reduced latency DRAM II (RLDRAM™ II) architecture. Operating at speeds of up to 400 MHz, RLDRAM II products are the second-generation, ultra high-speed double data rate (DDR) SDRAM that combines fast random access with extremely high bandwidth and high density targeting communication and data storage applications. Datasheets for the 288Mb RLDRAM II devices are now available on the RLDRAM web site.

RLDRAM architecture is designed to meet the memory requirements of today’s high-bandwidth communication applications. The device’s eight-bank architecture is optimized for high speed and achieves a peak bandwidth of 28.8 gigabit per second (Gbps) using a 36-bit interface and a 400 MHz system clock. RLDRAM II boasts a low latency and random cycle time (tRC) of 20ns providing a higher data throughput. Additional advantages of the RLDRAM II feature set include; on-die termination (ODT), multiplexed or non-multiplexed addressing, on-chip delay lock loop (DLL), common or separate I/O and programmable output impedance and a power efficient 1.8V core. These features provide designers with increased design flexibility, balanced READ and WRITE ratio and the elimination of bus turnaround contention; as well as a simplified design-in process.


“ RLDRAM II devices are an excellent solution to enable high-speed Ethernet and next-generation networking system designs to achieve up to 10 Gbps to 40 Gbps data rates,” said Deb Matus, Micron’s DRAM Marketing Manager for Networking and Communications. “We continue to see more and more support for this technology throughout the market. Applications using RLDRAM products include networking, consumer devices, graphics and L3 Cache.”

“ The original RLDRAM devices offered a significant performance boost with unprecedented latency for high-speed networking designs,” said Dr. Ernst Strasser, Marketing Director for Specialty DRAM Products at Infineon Technologies. “RLDRAM II devices take another step forward, advancing performance once again for communications products and other applications requiring very high speed random data access and exceptional bandwidth. With publication of the RLDRAM II specification, Infineon and Micron signal our commitment to provide the industry with detailed design standards, a clear roadmap and the assurance of multiple sources from leading memory manufacturers. It’s a significant benefit for the design community.”

RLDRAM II devices are available in a standard 144-ball FBGA, 11mm X 18.5mm package to enable ultra high-speed data transfer rates and a simple upgrade path from former products. RLDRAM II devices are available in three configurations, 8 Meg x 36, 16 Meg x 18 and a 32 Meg x 9. Infineon and Micron co-developed the RLDRAM architecture, ensuring standardization, multi-sourcing, and functional compatibility.

" The combination of ultra-high bandwidth, speed, and device density delivered in the RLDRAM II devices will be very attractive to designers of advanced telecommunications equipment", said Rina Raman, Director of Applications for Xilinx’ Advanced Products Group. "Xilinx has been working closely with Micron and Infineon and is pleased to provide controller solutions for RLDRAM II which include not only high-performance FPGAs but also an application note, reference design, and demonstration board to help designers characterize and quickly deploy RLDRAM II devices in their designs."

" RLDRAM II provides the memory bandwidth necessary for today’s telecommunications designs," said Justin Cowling, Marketing Director of Altera’s Intellectual Property Business Unit. "Altera has been working with Micron and Infineon to offer high-performance FPGA support for RLDRAM II by leveraging the dedicated DDR I/O circuitry in our Stratix device family."

Ralph Heinrich | Infineon Technologies AG
Further information:
http://www.rldram.com
http://www.infineon.com
http://www.micron.com

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>