Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Infineon and Micron announce RLDRAM II Specification


Next-Generation, High-bandwidth Memory Architecture Targets Communication Data Storage Applications

Infineon Technologies AG and Micron Technology, Inc., today announced the release of the complete specification for reduced latency DRAM II (RLDRAM™ II) architecture. Operating at speeds of up to 400 MHz, RLDRAM II products are the second-generation, ultra high-speed double data rate (DDR) SDRAM that combines fast random access with extremely high bandwidth and high density targeting communication and data storage applications. Datasheets for the 288Mb RLDRAM II devices are now available on the RLDRAM web site.

RLDRAM architecture is designed to meet the memory requirements of today’s high-bandwidth communication applications. The device’s eight-bank architecture is optimized for high speed and achieves a peak bandwidth of 28.8 gigabit per second (Gbps) using a 36-bit interface and a 400 MHz system clock. RLDRAM II boasts a low latency and random cycle time (tRC) of 20ns providing a higher data throughput. Additional advantages of the RLDRAM II feature set include; on-die termination (ODT), multiplexed or non-multiplexed addressing, on-chip delay lock loop (DLL), common or separate I/O and programmable output impedance and a power efficient 1.8V core. These features provide designers with increased design flexibility, balanced READ and WRITE ratio and the elimination of bus turnaround contention; as well as a simplified design-in process.

“ RLDRAM II devices are an excellent solution to enable high-speed Ethernet and next-generation networking system designs to achieve up to 10 Gbps to 40 Gbps data rates,” said Deb Matus, Micron’s DRAM Marketing Manager for Networking and Communications. “We continue to see more and more support for this technology throughout the market. Applications using RLDRAM products include networking, consumer devices, graphics and L3 Cache.”

“ The original RLDRAM devices offered a significant performance boost with unprecedented latency for high-speed networking designs,” said Dr. Ernst Strasser, Marketing Director for Specialty DRAM Products at Infineon Technologies. “RLDRAM II devices take another step forward, advancing performance once again for communications products and other applications requiring very high speed random data access and exceptional bandwidth. With publication of the RLDRAM II specification, Infineon and Micron signal our commitment to provide the industry with detailed design standards, a clear roadmap and the assurance of multiple sources from leading memory manufacturers. It’s a significant benefit for the design community.”

RLDRAM II devices are available in a standard 144-ball FBGA, 11mm X 18.5mm package to enable ultra high-speed data transfer rates and a simple upgrade path from former products. RLDRAM II devices are available in three configurations, 8 Meg x 36, 16 Meg x 18 and a 32 Meg x 9. Infineon and Micron co-developed the RLDRAM architecture, ensuring standardization, multi-sourcing, and functional compatibility.

" The combination of ultra-high bandwidth, speed, and device density delivered in the RLDRAM II devices will be very attractive to designers of advanced telecommunications equipment", said Rina Raman, Director of Applications for Xilinx’ Advanced Products Group. "Xilinx has been working closely with Micron and Infineon and is pleased to provide controller solutions for RLDRAM II which include not only high-performance FPGAs but also an application note, reference design, and demonstration board to help designers characterize and quickly deploy RLDRAM II devices in their designs."

" RLDRAM II provides the memory bandwidth necessary for today’s telecommunications designs," said Justin Cowling, Marketing Director of Altera’s Intellectual Property Business Unit. "Altera has been working with Micron and Infineon to offer high-performance FPGA support for RLDRAM II by leveraging the dedicated DDR I/O circuitry in our Stratix device family."

Ralph Heinrich | Infineon Technologies AG
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>