Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infineon and Micron announce RLDRAM II Specification

12.05.2003


Next-Generation, High-bandwidth Memory Architecture Targets Communication Data Storage Applications



Infineon Technologies AG and Micron Technology, Inc., today announced the release of the complete specification for reduced latency DRAM II (RLDRAM™ II) architecture. Operating at speeds of up to 400 MHz, RLDRAM II products are the second-generation, ultra high-speed double data rate (DDR) SDRAM that combines fast random access with extremely high bandwidth and high density targeting communication and data storage applications. Datasheets for the 288Mb RLDRAM II devices are now available on the RLDRAM web site.

RLDRAM architecture is designed to meet the memory requirements of today’s high-bandwidth communication applications. The device’s eight-bank architecture is optimized for high speed and achieves a peak bandwidth of 28.8 gigabit per second (Gbps) using a 36-bit interface and a 400 MHz system clock. RLDRAM II boasts a low latency and random cycle time (tRC) of 20ns providing a higher data throughput. Additional advantages of the RLDRAM II feature set include; on-die termination (ODT), multiplexed or non-multiplexed addressing, on-chip delay lock loop (DLL), common or separate I/O and programmable output impedance and a power efficient 1.8V core. These features provide designers with increased design flexibility, balanced READ and WRITE ratio and the elimination of bus turnaround contention; as well as a simplified design-in process.


“ RLDRAM II devices are an excellent solution to enable high-speed Ethernet and next-generation networking system designs to achieve up to 10 Gbps to 40 Gbps data rates,” said Deb Matus, Micron’s DRAM Marketing Manager for Networking and Communications. “We continue to see more and more support for this technology throughout the market. Applications using RLDRAM products include networking, consumer devices, graphics and L3 Cache.”

“ The original RLDRAM devices offered a significant performance boost with unprecedented latency for high-speed networking designs,” said Dr. Ernst Strasser, Marketing Director for Specialty DRAM Products at Infineon Technologies. “RLDRAM II devices take another step forward, advancing performance once again for communications products and other applications requiring very high speed random data access and exceptional bandwidth. With publication of the RLDRAM II specification, Infineon and Micron signal our commitment to provide the industry with detailed design standards, a clear roadmap and the assurance of multiple sources from leading memory manufacturers. It’s a significant benefit for the design community.”

RLDRAM II devices are available in a standard 144-ball FBGA, 11mm X 18.5mm package to enable ultra high-speed data transfer rates and a simple upgrade path from former products. RLDRAM II devices are available in three configurations, 8 Meg x 36, 16 Meg x 18 and a 32 Meg x 9. Infineon and Micron co-developed the RLDRAM architecture, ensuring standardization, multi-sourcing, and functional compatibility.

" The combination of ultra-high bandwidth, speed, and device density delivered in the RLDRAM II devices will be very attractive to designers of advanced telecommunications equipment", said Rina Raman, Director of Applications for Xilinx’ Advanced Products Group. "Xilinx has been working closely with Micron and Infineon and is pleased to provide controller solutions for RLDRAM II which include not only high-performance FPGAs but also an application note, reference design, and demonstration board to help designers characterize and quickly deploy RLDRAM II devices in their designs."

" RLDRAM II provides the memory bandwidth necessary for today’s telecommunications designs," said Justin Cowling, Marketing Director of Altera’s Intellectual Property Business Unit. "Altera has been working with Micron and Infineon to offer high-performance FPGA support for RLDRAM II by leveraging the dedicated DDR I/O circuitry in our Stratix device family."

Ralph Heinrich | Infineon Technologies AG
Further information:
http://www.rldram.com
http://www.infineon.com
http://www.micron.com

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>