Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Infineon develops chip network for textiles - Intelligence by the meter


Researchers from Infineon Technologies AG have developed a way to make large textile surfaces such as carpeting or tent cloth “intelligent”. This technology innovation may lead to new products for the monitoring of buildings, the structural control of buildings of all kinds and for use in the advertising industry.

Woven into fabrics, a self-organizing network of robust chips is able to monitor temperatures, pressures or vibrations as required. In addition to the sensor functionality, the fabric can be equipped with tiny light-emitting diodes (LEDs) to provide directional guidance or serve as advertising material. In this manner, the “intelligent” fabric could be used as a motion sensor or fire alarm, or to control burglar alarm and air-conditioning systems. Infineon plans to further develop this technology for the integration of microelectronics in textile surfaces into a fully functional, large-scale “intelligent” fabric over the next two years, together with cooperation partners from the textile industry.

The “intelligent” textiles hardly miss a thing

The microelectronics modules in the concept demonstrator of an “intelligent” floor covering are embedded in the textile structure in the form of a checkerboard. Each chip is connected to its four adjacent “neighbors” by electrically conductive threads, which creates a network that enables the flow of information. The information is forwarded between the chips and can be transmitted to various systems such as fire-alarms, burglar alarm or air-conditioning systems via a data interface. In this manner, an “intelligent” carpeting could e.g. tell the alarm system where a person is located in a room and in which direction he/she is moving. Equipped with woven-in and individually controlled LEDs, the carpet can serve as a guidance system, e.g. to guide visitor streams through public buildings or to direct them to emergency exits if a dangerous situation arises.

The basic technology also can be used in the construction industry or in the production of Zeppelins (airships), balloon envelopes and tent-cloth. Additionally, the water- and heat-resistant chips can be used as sensors in various support structures, such as columns or walls envelopes. The chips can gather information about the condition and the loading of materials, thus permitting the early identification of local defects, breakage or cracks in construction materials or fabrics. This can increase building safety because the detection of defects is no longer limited to individually initiated point inspections. Another potential application would be based on the integration of individually controllable LEDs in Zeppelin (airship) and balloon envelopes or in flags and tent walls, permitting these materials to carry advertising or directional messages.

Robust functionality through self-organization and fault tolerance

Each chip automatically determines its position within the network within fractions of a second after initialization. It is connected to its four immediate chip neighbors by electrically conductive threads and exchanges information with them. This creates a neural, i.e. self-learning network that is even fault-tolerant. If a chip or conductive path fails, the network will automatically locate this fault and immediately reorganize itself: It will find a new path within the overall system via the neighboring chips in order to maintain the information flow. This offers the possibility to cut the “intelligent” carpeting to virtually any shape and size without damaging the electronic network function. The chips can be placed with any spacing between them; however, the closer together they are woven into the textile structure, the more accurate they will work.

Reiner Schoenrock | Infineon Technologies AG
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>