Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infineon develops chip network for textiles - Intelligence by the meter

05.05.2003


Researchers from Infineon Technologies AG have developed a way to make large textile surfaces such as carpeting or tent cloth “intelligent”. This technology innovation may lead to new products for the monitoring of buildings, the structural control of buildings of all kinds and for use in the advertising industry.





Woven into fabrics, a self-organizing network of robust chips is able to monitor temperatures, pressures or vibrations as required. In addition to the sensor functionality, the fabric can be equipped with tiny light-emitting diodes (LEDs) to provide directional guidance or serve as advertising material. In this manner, the “intelligent” fabric could be used as a motion sensor or fire alarm, or to control burglar alarm and air-conditioning systems. Infineon plans to further develop this technology for the integration of microelectronics in textile surfaces into a fully functional, large-scale “intelligent” fabric over the next two years, together with cooperation partners from the textile industry.

The “intelligent” textiles hardly miss a thing


The microelectronics modules in the concept demonstrator of an “intelligent” floor covering are embedded in the textile structure in the form of a checkerboard. Each chip is connected to its four adjacent “neighbors” by electrically conductive threads, which creates a network that enables the flow of information. The information is forwarded between the chips and can be transmitted to various systems such as fire-alarms, burglar alarm or air-conditioning systems via a data interface. In this manner, an “intelligent” carpeting could e.g. tell the alarm system where a person is located in a room and in which direction he/she is moving. Equipped with woven-in and individually controlled LEDs, the carpet can serve as a guidance system, e.g. to guide visitor streams through public buildings or to direct them to emergency exits if a dangerous situation arises.

The basic technology also can be used in the construction industry or in the production of Zeppelins (airships), balloon envelopes and tent-cloth. Additionally, the water- and heat-resistant chips can be used as sensors in various support structures, such as columns or walls envelopes. The chips can gather information about the condition and the loading of materials, thus permitting the early identification of local defects, breakage or cracks in construction materials or fabrics. This can increase building safety because the detection of defects is no longer limited to individually initiated point inspections. Another potential application would be based on the integration of individually controllable LEDs in Zeppelin (airship) and balloon envelopes or in flags and tent walls, permitting these materials to carry advertising or directional messages.

Robust functionality through self-organization and fault tolerance

Each chip automatically determines its position within the network within fractions of a second after initialization. It is connected to its four immediate chip neighbors by electrically conductive threads and exchanges information with them. This creates a neural, i.e. self-learning network that is even fault-tolerant. If a chip or conductive path fails, the network will automatically locate this fault and immediately reorganize itself: It will find a new path within the overall system via the neighboring chips in order to maintain the information flow. This offers the possibility to cut the “intelligent” carpeting to virtually any shape and size without damaging the electronic network function. The chips can be placed with any spacing between them; however, the closer together they are woven into the textile structure, the more accurate they will work.

Reiner Schoenrock | Infineon Technologies AG
Further information:
http://www.infineon.com

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>