Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers aim to make average singers sound like virtuosos

24.04.2003


Karaoke may never be the same, thanks to research being presented in Nashville detailing the latest findings in efforts to create a computerized system that makes average singers sound like professionals.



"Our ultimate goal is to have a computer system that will transform a poor singing voice into a great singing voice," said Mark J.T. Smith, a professor and head of Purdue University’s School of Electrical and Computer Engineering.

To that end Smith, a former faculty member at the Georgia Institute of Technology, is working with Georgia Tech graduate student Matthew Lee to create computer models for voice analysis and synthesis. These models, or programs called algorithms, break the human singing voice into components that can then be modified to produce a more professional-sounding rendition of the original voice.


Far more work is needed before the system is finished, Smith said. He said the specialized programs are, however, able to alter certain important characteristics of a person’s voice, such as pitch, duration, and "vibrato," or the modulation in frequency produced by professional singers.

Lee will present the latest research findings on April 30 during the 145th Meeting of the Acoustical Society of America in Nashville, Tenn., the nation’s country music capital. Lee will demonstrate the system by playing before-and-after country music audio clips to researchers attending the conference.

The system uses a special technique to break down the original voice. The voice is then reconstructed using a mathematical method called the fast Fourier transform, which enables the system to resynthesize the voice quickly.

Smith, who specializes in an area of electrical engineering known as signal processing, began working on the underlying "sinusoidal model" in the mid-1980s with former doctoral student E. Bryan George, who pioneered the method. The model enables the human singing voice to be broken into components, or sine wave segments. More recently, Smith and Lee developed a method for modifying sine wave parameters in the segments to improve the quality of singing.

"While we have had success in improving the quality of the singing voice samples in our database, we have a way to go before we are able to handle all types of voices reliably," Smith said. "There are many challenges in developing a system of this type.

"Being able to characterize the properties of a good voice in terms of the sine wave components that we compute is not a trivial task. The problem is further complicated by the wide variety of singing styles and voice types that are present in our population."

For example, the sine wave components for male voices and female voices are significantly different.

"It turns out that we are having greater difficulty with the male singers than with the female singers," Smith said. "The higher pitched voices are easier for us to work with, in general."

Other challenges include finding ways to improve a person’s singing without dramatically altering the original voice, identifying the parameters that need to be modified for specific types of quality improvements, and then operating the system in real time on available hardware.

An important feature of the sinusoidal model technique is an "overlap-add" construction, in which a singing voice is partitioned into segments and processed in blocks. The model is designed around blocks that overlap, which results in voice synthesis that sounds natural and not choppy, Smith said.

Singing is first converted into a sequence of numbers, which is modified into a new set of numbers that represents a more professional singing voice. The new numbers are then fed to a digital-to-analog converter and to a speaker, Smith said.

The sinusoidal model Smith and Lee use could have broader applications, such as synthesizing musical instruments and improving the quality of text-to-speech programs in which words typed on a computer are automatically converted into spoken language. Former Georgia Tech doctoral student Michael Macon and his adviser Mark Clements used the sinusoidal model Smith and George developed to create a system that changes text into speech and typed lyrics into singing.

Other possible applications include programs for the hearing-impaired that make it easier to hear speech and systems that change the playback speed of digital recordings.

"The idea of digitally enhanced human singing has been brewing in my mind for a long time," Smith said. "What I would really like is for us to cut an album one of these days."

Early portions of the research were funded by the National Science Foundation.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Mark J.T. Smith, (765) 494-3539, mjts@purdue.edu

Matthew Lee, (404) 664-8323, mattlee@ece.gatech.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030423.Smith.singing.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>