Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high-density data storage may become practical with breakthrough in nanoscale magnetic sensors

03.02.2003


A simpler and more reliable manufacturing method has allowed two materials researchers to produce nanoscale magnetic sensors that could increase the storage capacity of hard disk drives by a factor of a thousand. Building on results reported last summer, the new sensors are up to 100 times more sensitive than any current alternative technology.

Susan Hua and Harsh Deep Chopra, both professors at the State University of New York at Buffalo, report in the February issue of Physical Review B on their latest experiments with nanoscale sensors that produce, at room temperature, unusually large electrical resistance changes in the presence of small magnetic fields. The work is supported by the National Science Foundation (NSF), an independent federal agency that supports fundamental research and education across all fields of science and engineering.

"We first saw a large effect of over 3,000 percent resistance change in small magnetic fields last July," Chopra said. "That was just the tip of the iceberg. These results point to the beautiful science that remains to be discovered." The largest signal they have seen is 33 times larger than the effect they reported last summer, which corresponds to a 100,000 percent change in resistance.



As stored "bits" of data get smaller, their magnetic fields get weaker, which makes individual bits harder to detect and "read." Packing more bits onto the surface of a computer disk, therefore, requires reliable sensors that are smaller, yet more sensitive to the bit’s magnetic field. Hua and Chopra’s nanoscale sensor seems to be ideally suited to the task.

For comparison, the technology in today’s hard disk drives relies on signals as weak as a 20 percent change in resistance. In other words, if sensor has a baseline signal of 1, an "off" bit causes Chopra and Hua’s sensors to spike at signal strength of -1,000, and an "on" bit registers +1,000. Current sensors, which only work on much larger bit sizes, would swing between an "off" signal of 0.8 and "on" of 1.2. The larger changes mean that the new sensors produce much more distinct and reliable signals than current technologies do, which would enable the bit size to be shrunk dramatically.

Chopra and Hua’s sensors have another advantage over other experimental techniques that are currently being studied: Because of the sensors’ high sensitivity at room temperature, they would be straightforward to adapt to work with existing technologies used by the $25 billion hard disk drive industry. Chopra predicts that their sensors would permit disk capacities on the order of terabits (trillions of bits) per square inch.

Their success builds on an effect called "ballistic magnetoresistance" (BMR). "Magnetoresistance" measures the change in electrical resistance when a device is placed in a magnetic field. Many types of magnetoresistance are being explored for sensors that might find use in hard disk drives. The magnetoresistance effect goes "ballistic" when an electron must cross a channel so narrow that the electron shoots straight through without scattering. In a normal wire, an electron zigzags its way through the material in a process called "diffusive" transport.

Chopra and Hua created their ballistic-effect sensors by forming nanoscale nickel "whiskers" between two larger nickel electrodes. Their current experiments include confirmation of the structure and composition of the whiskers with scanning electron microscopy.

The researchers suspect that the ballistic effect stems from pinch points, or constrictions, in the whiskers produced during manufacturing. The new manufacturing method, which also allowed them to reliably produce nanosensors with the desired effect, is therefore a key to Chopra and Hua’s latest success.

Chopra and Hua modified and adapted a method of producing controlled nanoscale wires originally developed b y Arizona State University’s Nongjian Tao, whose work is also supported by NSF. Tao’s electrodeposition method allowed Chopra and Hua to specify in advance the resistance they wanted from their nanoscale whiskers. They can now reproduce their contacts reliably and simply, as opposed to the hit-or-miss method they had used previously. "We have been consistently able to produce contacts with BMR effects of several thousand percent," Chopra said.

Besides disk drives, these types of sensors may also have biomedical applications. For example, the sensor’s electrical properties might be used to detect biomolecules in solution, even in low concentrations, according to Chopra. By attaching itself to the sensor, each type of biomolecule would impart its own "fingerprint" by changing the electrical signal of the nanocontact.

NSF Science Experts:
K.L. Murty
Tel.: 001-703-292-4935
E-mail: kmurty@nsf.gov
Shih Chi Liu
Tel.: 001-703-292-8360
E-mail: sliu@nsf.gov

David Hart | National Science Foundation
Further information:
http://www.nsf.gov/od/lpa/news/02/pr0255.htm
http://www.nsf.gov
http://www.fastlane.nsf.gov/a6/A6Start.htm

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>