Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research promises faster, cheaper and more reliable microchips


A project between academia and industry is aiming to spark a world electronics revolution by producing faster, cheaper and more reliable microchips.

The University of Newcastle upon Tyne, UK, has joined forces with Amtel, on North Tyneside in the North East of England, to create ‘strained silicon’ microchips, which involves adding a material called germanium to the traditional silicon used in semiconductor manufacturing.

Atmel, whose silicon chips find applications in such diverse products as smart cards and game consoles like XBOX, is playing host to a team of five Newcastle University researchers led by top microelectronics professor Anthony O’Neill.

“With this process we can create strained silicon microchips, which will be much faster or use less battery power than conventional microchips” explained Professor Anthony O’Neill, who leads a team of 5 researchers. The team, hosted by Atmel, aim to produce the world’s first strained silicon technology, ahead of the competition.

“Microchips have doubled in performance every 18 months for the last 30 years, but the end of the road is now in sight, which means new innovations like strained silicon are needed at the leading edge of microelectronics,” added Professor O’Neill, l who has been working with strained silicon processes for almost ten years.

Atmel Managing Director Craig McInnes said: “This is great news for the North East because it brings real, commercial research and development to the region. This will help develop the knowledge-based economy which is vital for our future.

“We have the potential here for developing a brand new process which will give us cheaper and faster chips. These will be the market leaders of tomorrow. Atmel and Newcastle University have joined forces to develop some of the world’s fastest microchips.”

The research and development project based at Atmel’s North Tyneside semiconductor factory and involves joint working to unravel the complexities of working with a new material called strained silicon germanium.

Strained silicon on silicon-germanium has been tipped as one of the key emergent technologies for the next generation of semiconductors.

If the venture proves successful it will bring leading edge technology to the North East.

The two sides have entered in to a joint collaborative agreement and will share the fruits of the development if it proves to be a world beater.

Atmel will supply the manufacturing know-how to speed up the development.

The joint venture marks a break-though in collaborative working between Newcastle University and industry.

Prof O’Neill added: “This really is getting the research out of the lab into the commercial world. Working with Atmel will allow us to take the product from the drawing board to marketable reality a lot quicker than relying on the limited resources available to universities.

“Getting products to market quickly is vital in the fast-moving world of semiconductor manufacturing and development. If we are successful we will have a world first made on Tyneside.”

Claire Jordan | alfa

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>