Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research promises faster, cheaper and more reliable microchips

20.01.2003


A project between academia and industry is aiming to spark a world electronics revolution by producing faster, cheaper and more reliable microchips.



The University of Newcastle upon Tyne, UK, has joined forces with Amtel, on North Tyneside in the North East of England, to create ‘strained silicon’ microchips, which involves adding a material called germanium to the traditional silicon used in semiconductor manufacturing.

Atmel, whose silicon chips find applications in such diverse products as smart cards and game consoles like XBOX, is playing host to a team of five Newcastle University researchers led by top microelectronics professor Anthony O’Neill.


“With this process we can create strained silicon microchips, which will be much faster or use less battery power than conventional microchips” explained Professor Anthony O’Neill, who leads a team of 5 researchers. The team, hosted by Atmel, aim to produce the world’s first strained silicon technology, ahead of the competition.

“Microchips have doubled in performance every 18 months for the last 30 years, but the end of the road is now in sight, which means new innovations like strained silicon are needed at the leading edge of microelectronics,” added Professor O’Neill, l who has been working with strained silicon processes for almost ten years.

Atmel Managing Director Craig McInnes said: “This is great news for the North East because it brings real, commercial research and development to the region. This will help develop the knowledge-based economy which is vital for our future.

“We have the potential here for developing a brand new process which will give us cheaper and faster chips. These will be the market leaders of tomorrow. Atmel and Newcastle University have joined forces to develop some of the world’s fastest microchips.”

The research and development project based at Atmel’s North Tyneside semiconductor factory and involves joint working to unravel the complexities of working with a new material called strained silicon germanium.

Strained silicon on silicon-germanium has been tipped as one of the key emergent technologies for the next generation of semiconductors.

If the venture proves successful it will bring leading edge technology to the North East.

The two sides have entered in to a joint collaborative agreement and will share the fruits of the development if it proves to be a world beater.

Atmel will supply the manufacturing know-how to speed up the development.

The joint venture marks a break-though in collaborative working between Newcastle University and industry.

Prof O’Neill added: “This really is getting the research out of the lab into the commercial world. Working with Atmel will allow us to take the product from the drawing board to marketable reality a lot quicker than relying on the limited resources available to universities.

“Getting products to market quickly is vital in the fast-moving world of semiconductor manufacturing and development. If we are successful we will have a world first made on Tyneside.”

Claire Jordan | alfa

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>