Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers crack security system designed to block Internet robots

11.12.2002


For every warm-blooded human who has ever taken an online poll or signed up for free web-based email, there are legions of computer-automated Internet robots, or "bots," trying to do the same thing.



A clever security system designed to stop these bot programs - which contribute to the Internet equivalent of computer-generated telemarketing calls - has now been cracked by a pair of computer scientists from the University of California, Berkeley.

Researchers at Carnegie Mellon University in Pittsburgh created the security system, known as Gimpy, to thwart the bot programs that relentlessly scour cyberspace for opportunities to register new email addresses, stuff ballots for online polls and direct unwitting participants in Internet chat rooms to advertisements. Bot-produced email accounts are hard to block or trace, making them ideal vehicles for sending spam to legitimate email users.


The UC Berkeley effort was a response to an open challenge by the research team at Carnegie Mellon to the computer science community to write a program capable of reading the Gimpy-distorted text.

Gimpy takes advantage of the fact that most people can easily recognize words with letters that are squiggly, fuzzy or otherwise distorted. In contrast, computer programs, such as those based upon optical character recognition (OCR) technology, are easily flustered if the text is not clear and free of background clutter.

Last year, Yahoo, one of the largest providers of free web-based email, implemented the Gimpy check as part of the new account registration process. People who can pass the test by typing in the correct word shown on the screen can go on to get an account. Bots, presumably, are stopped cold.

"We were able to crack Gimpy because of our previous research on a technique called ’shape contexts’ for object recognition," said Jitendra Malik, professor and chair of the Division of Computer Science at UC Berkeley’s College of Engineering. "The basic idea is to match shapes based upon the relative configuration of contours in a way that can tolerate small distortions. We had applied the technique before to handwritten digits and human figures, as well as to three-dimensional objects, so it seemed plausible to try it here."

It took five days for Malik and Greg Mori, computer science doctoral student at UC Berkeley, to create the program, which works by comparing the distorted letters in the given field to the 26 letters of the alphabet. Algorithms then come up with three to five likely candidate letters and group them in pairs that are analyzed to see whether they can be joined to form complete words. The resulting words are then scored based upon how closely the letters matched the image in the field. The word with the best score is then chosen.

Mori compared the process to detecting arms, legs and a head in an image to come up with the conclusion that a human is depicted.

In a trial using 191 images, the process worked 83 percent of the time for the simplest version of Gimpy, known as EZ-Gimpy, which "hides" a single word amid a cluttered background. This is the version used by Yahoo in the email registration process.

In a more difficult version of Gimpy, as many as five pairs of distorted words are presented with the word pairs superimposed upon each other. The user must then ferret out three correct words to pass the test.

"Breaking this harder version of Gimpy is still a work in progress because recognizing letters that are pasted on top of each other is more difficult," said Mori. "At this point, our success rate for the more challenging Gimpy is 30 percent."

Gimpy is one of several different programs in a project called CAPTCHA, which stands for "Completely Automated Public Turing test to Tell Computers and Humans Apart," headed by Manuel Blum, professor of computer science at Carnegie Mellon University, with his graduate student, Luis von Ahn. Before joining Carnegie Mellon, Blum taught computer science at UC Berkeley for 30 years.

Malik said the Gimpy challenge is a great test for the ongoing research in computer object recognition he and others at UC Berkeley are conducting. "We’re looking at the bigger picture, so to speak," he said. "The goal of the computer vision research we are doing is to develop programs that can recognize people, animals and other objects in a picture. It’s a shift from programs that can simply read text to those that can actually see pictures, which is a major step forward in the field of artificial intelligence."

Once Malik and Mori successfully cracked the EZ-Gimpy system, they notified Blum at Carnegie Mellon.

"I was delighted when I heard from them," said Blum. "They were the first ones to successfully take up the challenge."

Blum said that he hopes this research will eventually bring online the wealth of materials in the Library of Congress, which has been a daunting task because of the difficulty current scanning software has in "reading" handwritten or manually typed text.

Blum noted that Carnegie Mellon’s Gimpy would be much more difficult to crack than EZ-Gimpy.

"They’ll keep making it harder, and we’ll keep working to break it," said Malik. "It’s great fun."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu/news/media/releases/2002/12/10_gimpy.html

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>