Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers crack security system designed to block Internet robots

11.12.2002


For every warm-blooded human who has ever taken an online poll or signed up for free web-based email, there are legions of computer-automated Internet robots, or "bots," trying to do the same thing.



A clever security system designed to stop these bot programs - which contribute to the Internet equivalent of computer-generated telemarketing calls - has now been cracked by a pair of computer scientists from the University of California, Berkeley.

Researchers at Carnegie Mellon University in Pittsburgh created the security system, known as Gimpy, to thwart the bot programs that relentlessly scour cyberspace for opportunities to register new email addresses, stuff ballots for online polls and direct unwitting participants in Internet chat rooms to advertisements. Bot-produced email accounts are hard to block or trace, making them ideal vehicles for sending spam to legitimate email users.


The UC Berkeley effort was a response to an open challenge by the research team at Carnegie Mellon to the computer science community to write a program capable of reading the Gimpy-distorted text.

Gimpy takes advantage of the fact that most people can easily recognize words with letters that are squiggly, fuzzy or otherwise distorted. In contrast, computer programs, such as those based upon optical character recognition (OCR) technology, are easily flustered if the text is not clear and free of background clutter.

Last year, Yahoo, one of the largest providers of free web-based email, implemented the Gimpy check as part of the new account registration process. People who can pass the test by typing in the correct word shown on the screen can go on to get an account. Bots, presumably, are stopped cold.

"We were able to crack Gimpy because of our previous research on a technique called ’shape contexts’ for object recognition," said Jitendra Malik, professor and chair of the Division of Computer Science at UC Berkeley’s College of Engineering. "The basic idea is to match shapes based upon the relative configuration of contours in a way that can tolerate small distortions. We had applied the technique before to handwritten digits and human figures, as well as to three-dimensional objects, so it seemed plausible to try it here."

It took five days for Malik and Greg Mori, computer science doctoral student at UC Berkeley, to create the program, which works by comparing the distorted letters in the given field to the 26 letters of the alphabet. Algorithms then come up with three to five likely candidate letters and group them in pairs that are analyzed to see whether they can be joined to form complete words. The resulting words are then scored based upon how closely the letters matched the image in the field. The word with the best score is then chosen.

Mori compared the process to detecting arms, legs and a head in an image to come up with the conclusion that a human is depicted.

In a trial using 191 images, the process worked 83 percent of the time for the simplest version of Gimpy, known as EZ-Gimpy, which "hides" a single word amid a cluttered background. This is the version used by Yahoo in the email registration process.

In a more difficult version of Gimpy, as many as five pairs of distorted words are presented with the word pairs superimposed upon each other. The user must then ferret out three correct words to pass the test.

"Breaking this harder version of Gimpy is still a work in progress because recognizing letters that are pasted on top of each other is more difficult," said Mori. "At this point, our success rate for the more challenging Gimpy is 30 percent."

Gimpy is one of several different programs in a project called CAPTCHA, which stands for "Completely Automated Public Turing test to Tell Computers and Humans Apart," headed by Manuel Blum, professor of computer science at Carnegie Mellon University, with his graduate student, Luis von Ahn. Before joining Carnegie Mellon, Blum taught computer science at UC Berkeley for 30 years.

Malik said the Gimpy challenge is a great test for the ongoing research in computer object recognition he and others at UC Berkeley are conducting. "We’re looking at the bigger picture, so to speak," he said. "The goal of the computer vision research we are doing is to develop programs that can recognize people, animals and other objects in a picture. It’s a shift from programs that can simply read text to those that can actually see pictures, which is a major step forward in the field of artificial intelligence."

Once Malik and Mori successfully cracked the EZ-Gimpy system, they notified Blum at Carnegie Mellon.

"I was delighted when I heard from them," said Blum. "They were the first ones to successfully take up the challenge."

Blum said that he hopes this research will eventually bring online the wealth of materials in the Library of Congress, which has been a daunting task because of the difficulty current scanning software has in "reading" handwritten or manually typed text.

Blum noted that Carnegie Mellon’s Gimpy would be much more difficult to crack than EZ-Gimpy.

"They’ll keep making it harder, and we’ll keep working to break it," said Malik. "It’s great fun."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu/news/media/releases/2002/12/10_gimpy.html

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>