Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart heat pipe efficiently cools laptops, permitting greater speed of operation

10.12.2002


’Hot laps’ to become yesterday’s problem



Laptops make laps hot, as users of mobile lightweight computers sometimes learn dramatically. (If you’re not easily shocked, go to http://www.reuters.com). And things could get worse: upcoming chips may produce 100 watts per square centimeter -- the heat generated by a light bulb -- creating the effect of an unpleasantly localized dry sauna. (Current chip emanations are in the 50 watts/cm2 range.)

Evacuating heat is one of the great problems facing engineers as they design faster laptops by downsizing circuit sizes and stacking chips one above the other. The heat from more circuits and chips increase the likelihood of circuit failures as well as overly heated laps.


"Space, military, and consumer applications, are all bumping up against a thermal barrier," says Sandia researcher Mike Rightley, whose newly patented "smart" heat pipe seems to solve the problem.

The simple, self-powered mechanism transfers heat to the side edge of the computer, where air fins or a tiny fan can dissipate the unwanted energy into air.

The technology is being licensed to a start-up company "that has a very interested large customer in the [civilian] laptop market," says Rightley.

"No internal redesign of laptops -- a bugaboo for computer makers -- is needed. The new design exactly duplicates in external form the heat transfer mechanism already in place in laptops," says Rightley. "Industry won’t even see the difference." The technique also interests the military, which seeks wearable computers with the smallest possible cooling fans. (Powerful fans are electronically noisy and give away the location of the user.)

In colder climates, the heat could be dumped into hand warmers rather than undesirably into fabric and the flesh beneath.

A paper describing the work has been accepted for publication by Microelectronics Journal.

The method replaces the typical laptop heat sink -- a chunk of metal that absorbs heat from circuits and then gives it up to air blown by a cooling fan -- with tiny liquid-filled pipes that shuttles heat to pre-chosen locations for dispersal.

In the heatpipe loop, heat from the chip changes liquid (in this case, methanol to vapor). The vapor yields up its heat at a pre-selected site, changes back to liquid and wicks back to its starting point to collect more heat.

Currently, typical laptops are cooled by a fan that merely blows the heat downward across a solid copper (formerly aluminum, when chips were cooler) plate that acts as a heat sink; thus, hot laps. The heat is spread out below the computer rather than moved to a particular location. Such air-cooled spreading, says Rightley, will work -- however uncomfortably -- till the hundred-degree range is exceeded. Then liquid cooling is essential. Outputs greater than 100 watts/cm2 can melt circuits.

"Formerly, thermal management solutions have been backend issues," says Rightley.

"It’s clear now that the smaller we go, the more that cooling engineers need to be involved early in product design."

More circuits installed per unit area improve capability but reduce reliability, since increased heat increases the possibility of circuit failure; the problems are multiplied when chips are stacked one atop the next.

Currently, microprocessors in desktop computers have to be situated adjacent to a heat sink several inches high and wide, with attendant fan close by. This design problem creates enormous difficulties for designers interested in stacking chips for greater computational capacity yet reducing overall computer size. A heat pipe can move heat from point A to point B without any direct geometrical relation between the points. This means that heat can be displaced to any desirable location, and a much smaller, quieter fan or even silent cooling fins can be used to dissipate heat.

"We thought one application would be for a wearable computer for the military," says Rightley. A box 6" by 1.5" by 4" could contain microprocessors, wireless web cards, information from planes, AWACS information, and weather, on a hard disk with graphics capability and peripherals. "But using a fan to cool a field device will never work because of mud and muck and water. It’s a perfect opportunity for heat pipes to put the heat out to fins so the computer cools naturally."

The wick in the Sandia heat pipe is made of finely etched lines about as deep as fingerprints. These guide methanol between several locations and an arbitrary end point. The structure, which works by capillary action like a kerosene wick, consists of a ring of copper used to separate two plates of copper. Sixty-micron-tall curving, porous copper lines (slightly less thick than the diameter of a human hair) made with photolithographic techniques, allow material wicking directionally along the surface to defy gravity.

"An isotropic method [that sends out heat in all directions] doesn’t work because it only cools the first heat source; you need anisotrophic capability to cool all sources of heat directionally," says Rightley. "We use laws of fluid mechanics to derive the optimum wick path to each heat source." The curvilinear guides can be patterned to go around holes drilled through the plate necessary to package it within the computer.

The program is part of the DARPA HERETIC program (Heat Removal by Thermal Integrated Circuits), a joint project of Sandia’s with the Georgia Institute of Technology.



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/hotlaptop.html
http://://www.sandia.gov

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>