Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart heat pipe efficiently cools laptops, permitting greater speed of operation

10.12.2002


’Hot laps’ to become yesterday’s problem



Laptops make laps hot, as users of mobile lightweight computers sometimes learn dramatically. (If you’re not easily shocked, go to http://www.reuters.com). And things could get worse: upcoming chips may produce 100 watts per square centimeter -- the heat generated by a light bulb -- creating the effect of an unpleasantly localized dry sauna. (Current chip emanations are in the 50 watts/cm2 range.)

Evacuating heat is one of the great problems facing engineers as they design faster laptops by downsizing circuit sizes and stacking chips one above the other. The heat from more circuits and chips increase the likelihood of circuit failures as well as overly heated laps.


"Space, military, and consumer applications, are all bumping up against a thermal barrier," says Sandia researcher Mike Rightley, whose newly patented "smart" heat pipe seems to solve the problem.

The simple, self-powered mechanism transfers heat to the side edge of the computer, where air fins or a tiny fan can dissipate the unwanted energy into air.

The technology is being licensed to a start-up company "that has a very interested large customer in the [civilian] laptop market," says Rightley.

"No internal redesign of laptops -- a bugaboo for computer makers -- is needed. The new design exactly duplicates in external form the heat transfer mechanism already in place in laptops," says Rightley. "Industry won’t even see the difference." The technique also interests the military, which seeks wearable computers with the smallest possible cooling fans. (Powerful fans are electronically noisy and give away the location of the user.)

In colder climates, the heat could be dumped into hand warmers rather than undesirably into fabric and the flesh beneath.

A paper describing the work has been accepted for publication by Microelectronics Journal.

The method replaces the typical laptop heat sink -- a chunk of metal that absorbs heat from circuits and then gives it up to air blown by a cooling fan -- with tiny liquid-filled pipes that shuttles heat to pre-chosen locations for dispersal.

In the heatpipe loop, heat from the chip changes liquid (in this case, methanol to vapor). The vapor yields up its heat at a pre-selected site, changes back to liquid and wicks back to its starting point to collect more heat.

Currently, typical laptops are cooled by a fan that merely blows the heat downward across a solid copper (formerly aluminum, when chips were cooler) plate that acts as a heat sink; thus, hot laps. The heat is spread out below the computer rather than moved to a particular location. Such air-cooled spreading, says Rightley, will work -- however uncomfortably -- till the hundred-degree range is exceeded. Then liquid cooling is essential. Outputs greater than 100 watts/cm2 can melt circuits.

"Formerly, thermal management solutions have been backend issues," says Rightley.

"It’s clear now that the smaller we go, the more that cooling engineers need to be involved early in product design."

More circuits installed per unit area improve capability but reduce reliability, since increased heat increases the possibility of circuit failure; the problems are multiplied when chips are stacked one atop the next.

Currently, microprocessors in desktop computers have to be situated adjacent to a heat sink several inches high and wide, with attendant fan close by. This design problem creates enormous difficulties for designers interested in stacking chips for greater computational capacity yet reducing overall computer size. A heat pipe can move heat from point A to point B without any direct geometrical relation between the points. This means that heat can be displaced to any desirable location, and a much smaller, quieter fan or even silent cooling fins can be used to dissipate heat.

"We thought one application would be for a wearable computer for the military," says Rightley. A box 6" by 1.5" by 4" could contain microprocessors, wireless web cards, information from planes, AWACS information, and weather, on a hard disk with graphics capability and peripherals. "But using a fan to cool a field device will never work because of mud and muck and water. It’s a perfect opportunity for heat pipes to put the heat out to fins so the computer cools naturally."

The wick in the Sandia heat pipe is made of finely etched lines about as deep as fingerprints. These guide methanol between several locations and an arbitrary end point. The structure, which works by capillary action like a kerosene wick, consists of a ring of copper used to separate two plates of copper. Sixty-micron-tall curving, porous copper lines (slightly less thick than the diameter of a human hair) made with photolithographic techniques, allow material wicking directionally along the surface to defy gravity.

"An isotropic method [that sends out heat in all directions] doesn’t work because it only cools the first heat source; you need anisotrophic capability to cool all sources of heat directionally," says Rightley. "We use laws of fluid mechanics to derive the optimum wick path to each heat source." The curvilinear guides can be patterned to go around holes drilled through the plate necessary to package it within the computer.

The program is part of the DARPA HERETIC program (Heat Removal by Thermal Integrated Circuits), a joint project of Sandia’s with the Georgia Institute of Technology.



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/hotlaptop.html
http://://www.sandia.gov

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>