Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart heat pipe efficiently cools laptops, permitting greater speed of operation

10.12.2002


’Hot laps’ to become yesterday’s problem



Laptops make laps hot, as users of mobile lightweight computers sometimes learn dramatically. (If you’re not easily shocked, go to http://www.reuters.com). And things could get worse: upcoming chips may produce 100 watts per square centimeter -- the heat generated by a light bulb -- creating the effect of an unpleasantly localized dry sauna. (Current chip emanations are in the 50 watts/cm2 range.)

Evacuating heat is one of the great problems facing engineers as they design faster laptops by downsizing circuit sizes and stacking chips one above the other. The heat from more circuits and chips increase the likelihood of circuit failures as well as overly heated laps.


"Space, military, and consumer applications, are all bumping up against a thermal barrier," says Sandia researcher Mike Rightley, whose newly patented "smart" heat pipe seems to solve the problem.

The simple, self-powered mechanism transfers heat to the side edge of the computer, where air fins or a tiny fan can dissipate the unwanted energy into air.

The technology is being licensed to a start-up company "that has a very interested large customer in the [civilian] laptop market," says Rightley.

"No internal redesign of laptops -- a bugaboo for computer makers -- is needed. The new design exactly duplicates in external form the heat transfer mechanism already in place in laptops," says Rightley. "Industry won’t even see the difference." The technique also interests the military, which seeks wearable computers with the smallest possible cooling fans. (Powerful fans are electronically noisy and give away the location of the user.)

In colder climates, the heat could be dumped into hand warmers rather than undesirably into fabric and the flesh beneath.

A paper describing the work has been accepted for publication by Microelectronics Journal.

The method replaces the typical laptop heat sink -- a chunk of metal that absorbs heat from circuits and then gives it up to air blown by a cooling fan -- with tiny liquid-filled pipes that shuttles heat to pre-chosen locations for dispersal.

In the heatpipe loop, heat from the chip changes liquid (in this case, methanol to vapor). The vapor yields up its heat at a pre-selected site, changes back to liquid and wicks back to its starting point to collect more heat.

Currently, typical laptops are cooled by a fan that merely blows the heat downward across a solid copper (formerly aluminum, when chips were cooler) plate that acts as a heat sink; thus, hot laps. The heat is spread out below the computer rather than moved to a particular location. Such air-cooled spreading, says Rightley, will work -- however uncomfortably -- till the hundred-degree range is exceeded. Then liquid cooling is essential. Outputs greater than 100 watts/cm2 can melt circuits.

"Formerly, thermal management solutions have been backend issues," says Rightley.

"It’s clear now that the smaller we go, the more that cooling engineers need to be involved early in product design."

More circuits installed per unit area improve capability but reduce reliability, since increased heat increases the possibility of circuit failure; the problems are multiplied when chips are stacked one atop the next.

Currently, microprocessors in desktop computers have to be situated adjacent to a heat sink several inches high and wide, with attendant fan close by. This design problem creates enormous difficulties for designers interested in stacking chips for greater computational capacity yet reducing overall computer size. A heat pipe can move heat from point A to point B without any direct geometrical relation between the points. This means that heat can be displaced to any desirable location, and a much smaller, quieter fan or even silent cooling fins can be used to dissipate heat.

"We thought one application would be for a wearable computer for the military," says Rightley. A box 6" by 1.5" by 4" could contain microprocessors, wireless web cards, information from planes, AWACS information, and weather, on a hard disk with graphics capability and peripherals. "But using a fan to cool a field device will never work because of mud and muck and water. It’s a perfect opportunity for heat pipes to put the heat out to fins so the computer cools naturally."

The wick in the Sandia heat pipe is made of finely etched lines about as deep as fingerprints. These guide methanol between several locations and an arbitrary end point. The structure, which works by capillary action like a kerosene wick, consists of a ring of copper used to separate two plates of copper. Sixty-micron-tall curving, porous copper lines (slightly less thick than the diameter of a human hair) made with photolithographic techniques, allow material wicking directionally along the surface to defy gravity.

"An isotropic method [that sends out heat in all directions] doesn’t work because it only cools the first heat source; you need anisotrophic capability to cool all sources of heat directionally," says Rightley. "We use laws of fluid mechanics to derive the optimum wick path to each heat source." The curvilinear guides can be patterned to go around holes drilled through the plate necessary to package it within the computer.

The program is part of the DARPA HERETIC program (Heat Removal by Thermal Integrated Circuits), a joint project of Sandia’s with the Georgia Institute of Technology.



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/hotlaptop.html
http://://www.sandia.gov

More articles from Information Technology:

nachricht Underwater acoustic localization of marine mammals and vehicles
23.11.2017 | IMDEA Networks Institute

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>