Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Darwin to Internet at the speed of light

26.11.2002


Internet traffic jams may become history if ESA succeeds in developing new technology to see nearby Earth-sized planets. Why? In looking for new ways to detect planets ESA is thinking that, instead of bulky mirrors and lenses in space, one can build miniaturised optical systems that fit onto a microchip. Such ‘integrated optics’ would also allow earthly computer networks to use high-speed routing of data streams as a natural spin-off.



Data moving around the Internet are like road traffic in that a car can be driven fast down a straight road but has to slow down a great deal when changing direction at a junction. The same thing happens on information highways. Beams of light carry data along fibre-optic cables at very high speeds. When the data arrive at computers, known as servers, the servers redirect them to their final destinations. Presently, you need to convert the light signals into electricity, and that slows everything down.

Electrons move at a speed of a few kilometres per second through a circuit, whereas light travels at nearly 300 000 kilometres per second. Integrated optics would leave the data as light and simply channel it through the chip, in the right direction. Scientists call this area integrated optics, referring to the integrated circuit board on which chips are mounted. Instead of miniaturised electronics, however, miniaturised optics are placed on a microchip.


ESA has a strategy to enable more sophisticated searches for extra-solar planets in the future. Two planned developments rely on combining the light from such planets in a number of different telescopes. These are the Darwin mission and its precursor, the ESA/ESO Ground-based European Nulling Interferometer Experiment (GENIE).

When you combine light beams, you traditionally need moving mirrors and lenses to divert the light beams to where you want them. However, if the system moves, it can break. As Malcolm Fridlund, Project Scientist for Darwin and GENIE says, “To change to integrated optics, which is much smaller and has no moving parts, would be highly desirable.”

Desirable certainly, but also difficult. At present, integrated optics is a science that is far behind integrated circuit technology. For this reason, ESA is funding two studies. Astrium has been asked to study a traditional optics approach and Alcatel is investigating an integrated-optics solution. “We shall take the decision on whether GENIE will use integrated optics in just over one year,” says Fridlund.

In the future, Darwin, ESA’s ambitious mission to find Earth-like planets, may also use integrated optics but using longer wavelengths of light than GENIE. This is uncharted territory as far as integrated optics is concerned. However, Fridlund is currently reviewing proposals from industrial companies which would like to take up the challenge. “What I’’m reading in those proposals is making me highly optimistic,” says Fridlund, “I don’t yet know whether mid-infrared integrated optics will have any commercial application, but until we develop them, we’ll never know.”

Should the integrated-optics approach work, the rewards would extend far beyond a few improvements in searching for planets. Here on Earth, for all home-computer users, for example, it could speed up the Internet by 100–1000 times. The consequences of surfing the Web at such speeds would be amazing.

Franco Bonacina | alfa
Further information:
http://www.esa.int

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>