Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Darwin to Internet at the speed of light

26.11.2002


Internet traffic jams may become history if ESA succeeds in developing new technology to see nearby Earth-sized planets. Why? In looking for new ways to detect planets ESA is thinking that, instead of bulky mirrors and lenses in space, one can build miniaturised optical systems that fit onto a microchip. Such ‘integrated optics’ would also allow earthly computer networks to use high-speed routing of data streams as a natural spin-off.



Data moving around the Internet are like road traffic in that a car can be driven fast down a straight road but has to slow down a great deal when changing direction at a junction. The same thing happens on information highways. Beams of light carry data along fibre-optic cables at very high speeds. When the data arrive at computers, known as servers, the servers redirect them to their final destinations. Presently, you need to convert the light signals into electricity, and that slows everything down.

Electrons move at a speed of a few kilometres per second through a circuit, whereas light travels at nearly 300 000 kilometres per second. Integrated optics would leave the data as light and simply channel it through the chip, in the right direction. Scientists call this area integrated optics, referring to the integrated circuit board on which chips are mounted. Instead of miniaturised electronics, however, miniaturised optics are placed on a microchip.


ESA has a strategy to enable more sophisticated searches for extra-solar planets in the future. Two planned developments rely on combining the light from such planets in a number of different telescopes. These are the Darwin mission and its precursor, the ESA/ESO Ground-based European Nulling Interferometer Experiment (GENIE).

When you combine light beams, you traditionally need moving mirrors and lenses to divert the light beams to where you want them. However, if the system moves, it can break. As Malcolm Fridlund, Project Scientist for Darwin and GENIE says, “To change to integrated optics, which is much smaller and has no moving parts, would be highly desirable.”

Desirable certainly, but also difficult. At present, integrated optics is a science that is far behind integrated circuit technology. For this reason, ESA is funding two studies. Astrium has been asked to study a traditional optics approach and Alcatel is investigating an integrated-optics solution. “We shall take the decision on whether GENIE will use integrated optics in just over one year,” says Fridlund.

In the future, Darwin, ESA’s ambitious mission to find Earth-like planets, may also use integrated optics but using longer wavelengths of light than GENIE. This is uncharted territory as far as integrated optics is concerned. However, Fridlund is currently reviewing proposals from industrial companies which would like to take up the challenge. “What I’’m reading in those proposals is making me highly optimistic,” says Fridlund, “I don’t yet know whether mid-infrared integrated optics will have any commercial application, but until we develop them, we’ll never know.”

Should the integrated-optics approach work, the rewards would extend far beyond a few improvements in searching for planets. Here on Earth, for all home-computer users, for example, it could speed up the Internet by 100–1000 times. The consequences of surfing the Web at such speeds would be amazing.

Franco Bonacina | alfa
Further information:
http://www.esa.int

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>