Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Stippling’ speeds 3-D computer imaging

26.11.2002


Ancient artists used a technique called stippling – in which pictures are created by painting or carving a series of tiny dots – to produce drawings on cave walls and utensils thousands of years ago.


This image of a human cranium was created with a new kind of computer-imaging software that uses the ancient technique of stippling to convert complex medical data into 3-D images that can be quickly viewed by medical professionals. Data from CT scans were converted into dots to create the stippled image. Cave dwellers and artisans used stippling thousands of years ago to create figures by painting or carving a series of tiny dots. More recently, 19th century Parisian artist Georges Seurat used the method, also called pointillism, to draw colorful, intricately detailed works. Because dots are the most simple visual element in a picture, they also are ideal for computer visualizations. (Purdue University School of Electrical and Computer Engineering)


This picture of a human foot was created with a new kind of computer-imaging software that uses the ancient technique of stippling to convert complex medical data into 3-D images that can be quickly viewed by medical professionals. In this image, data from CT scans were converted into dots to create the stippled image. Stippling uses tiny dots to create an image. Because dots are the most simple visual element in a picture, they also are ideal for computer visualizations. (Purdue University School of Electrical and Computer Engineering)



Now engineers at Purdue University have created a new kind of computer-imaging software that uses stippling to quickly produce complex pictures of internal organs and other renderings. The method is 10 times faster than some conventional methods and could provide a tool for medical professionals to quickly preview images in real time as a patient is being examined with imaging technologies such as CT scans and magnetic resonance imaging (MRI).

In stippling, also known as pointillism, the artist creates numerous dots with paint, ink or pencil to produce gradations of light and shade, forming an image. Georges Seurat, a 19th century Parisian artist, used the same technique to draw colorful, intricately detailed works.


Because dots are the most simple visual element in a picture, they also are ideal for computer visualizations, said David S. Ebert, an associate professor in Purdue’s School of Electrical and Computer Engineering.

The researchers presented a paper about their new technique Nov. 1 during the Institute of Electrical and Electronics Engineers’ Visualization 2002 Conference in Boston. IEEE cited the work as the best paper presented during the conference. The paper was written by Ebert; Purdue graduate student Aidong Lu; Christopher J. Morris, a researcher at IBM’s Thomas J. Watson Research Center; Penny Rheingans, an assistant professor in the Computer Science and Electrical Engineering Department at the University of Maryland, Baltimore County; and Charles Hansen, an associate professor in the School of Computing at the University of Utah.

The software can use data from three-dimensional imaging techniques – such as CT scans and MRI – to quickly draw pictures of the body, converting those complex, raw medical data into images viewed in real time. The 3-D image can be rotated and manipulated to zoom in on specific portions. Then, a doctor who wanted to view the same regions in more detail could use a more time-consuming imaging method.

"You can apply this to data sets from scientific applications and medical applications to get a quick preview and understanding of the most important features of the data, which you can interact with in real time," Ebert said. "Because points are very simple geometrically, it is a way to pull out the features of the data set or help you find problems more quickly.

"More conventional imaging methods of, say a CT scan of a person’s head, require slower processing techniques, which means either you have to do a lot of processing or it takes a while to generate an image. We can have a CT rendering of a person’s internal organs in real time, where the organs are represented as a series of small points."

The method could be ready for commercialization soon.

"It is at the point where people can download it and use it, so it could be ready for commercial use within a year," said Ebert, director of the Purdue Rendering and Perceptualization Lab.

Animations showing how the method works are available. The research has been funded by the National Science Foundation and the U.S. Department of Energy.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: David S. Ebert, (765) 494-9064, ebertd@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/021125.Ebert.stippling.html

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>