Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote data processing makes tele-immersion system first ’network computer’

19.11.2002


When they make their first public demonstration of tele-immersion at this week’s Super Computing 2002 conference in Baltimore, computer scientists will also attain another first: a "network computer" that processes data at a location far removed from either input or output.



While the tele-immersion system will gather and display information in side-by-side booths at the Baltimore Convention Center, actual data processing will occur some 250 miles away at the Pittsburgh Supercomputing Center. Previous demonstrations of tele-immersion, a next-generation type of ultra-realistic videoconferencing that draws upon Internet2 and technology similar to that used in 3D movies, have relied upon local computing power at the University of Pennsylvania and other participating institutions.

"Shifting the computing from 10 processors at Penn to 1,240 parallel machines based in Pittsburgh will speed data processing 75-fold, turning tele-immersion into a true real-time technology," said Kostas Daniilidis, an assistant professor of computer and information science at Penn. "It now takes our tele-immersion system roughly 15 seconds to scan, process and display the entire volume of a typical room. With help from the Pittsburgh Supercomputing Center, that time will shrink to 200 milliseconds."


This week’s tele-immersion demonstration in Baltimore, presented by scientists from Penn and the University of North Carolina at Chapel Hill, is the first large-scale public display of the technology. Drawing on a bank of cameras that constantly scans participants and their surroundings, tele-immersion allows participants in different states to feel as if they’re chatting in the same room. But gathering such comprehensive, real-time measurements of a person and his environment takes a toll: Tele-immersion generates huge amounts of data, requiring massive computing power and bandwidth.

The boost in computing power achieved with the move to the Pittsburgh Supercomputing Center will permit at least one significant advance in tele-immersion’s capabilities: For the first time, the system will be able to image an entire room in real time. Previously, limited processing power restricted the gathering of images to a small area where participants were seated, while the background was static, not unlike a television anchor seated before an unchanging image of a city skyline.

"The reassigning of tele-immersion data processing to a faraway supercomputing center is a milestone for grid computing, which uses remote machines to process data," Daniilidis said. "If connections are fast enough -- as with Internet2 -- the network itself becomes a giant computer, linking processors scattered over many hundreds of miles. This tele-immersion experiment shows definitively that a network computer configured this way can handle extremely data-intensive operations much more quickly than if processing were occurring within the confines of a single room."

All this computing is for a good cause. Daniilidis and his colleagues say tele-immersion may well revolutionize the way people communicate, allowing people on opposite ends of the country or world to feel temporarily as if they’re in each other’s presence. Key to tele-immersion’s realistic feel are a hemispherical bank of digital cameras that capture participants from a variety of angles and tracking gear worn on their heads. Combined with polarized glasses much like those worn at 3D movies, the setup creates subtly different images in each eye, much as our eyes do in daily life.

The tele-immersion collaboration involving Penn, UNC and the Pittsburgh Supercomputing Center is funded by the National Science Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>