Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote data processing makes tele-immersion system first ’network computer’

19.11.2002


When they make their first public demonstration of tele-immersion at this week’s Super Computing 2002 conference in Baltimore, computer scientists will also attain another first: a "network computer" that processes data at a location far removed from either input or output.



While the tele-immersion system will gather and display information in side-by-side booths at the Baltimore Convention Center, actual data processing will occur some 250 miles away at the Pittsburgh Supercomputing Center. Previous demonstrations of tele-immersion, a next-generation type of ultra-realistic videoconferencing that draws upon Internet2 and technology similar to that used in 3D movies, have relied upon local computing power at the University of Pennsylvania and other participating institutions.

"Shifting the computing from 10 processors at Penn to 1,240 parallel machines based in Pittsburgh will speed data processing 75-fold, turning tele-immersion into a true real-time technology," said Kostas Daniilidis, an assistant professor of computer and information science at Penn. "It now takes our tele-immersion system roughly 15 seconds to scan, process and display the entire volume of a typical room. With help from the Pittsburgh Supercomputing Center, that time will shrink to 200 milliseconds."


This week’s tele-immersion demonstration in Baltimore, presented by scientists from Penn and the University of North Carolina at Chapel Hill, is the first large-scale public display of the technology. Drawing on a bank of cameras that constantly scans participants and their surroundings, tele-immersion allows participants in different states to feel as if they’re chatting in the same room. But gathering such comprehensive, real-time measurements of a person and his environment takes a toll: Tele-immersion generates huge amounts of data, requiring massive computing power and bandwidth.

The boost in computing power achieved with the move to the Pittsburgh Supercomputing Center will permit at least one significant advance in tele-immersion’s capabilities: For the first time, the system will be able to image an entire room in real time. Previously, limited processing power restricted the gathering of images to a small area where participants were seated, while the background was static, not unlike a television anchor seated before an unchanging image of a city skyline.

"The reassigning of tele-immersion data processing to a faraway supercomputing center is a milestone for grid computing, which uses remote machines to process data," Daniilidis said. "If connections are fast enough -- as with Internet2 -- the network itself becomes a giant computer, linking processors scattered over many hundreds of miles. This tele-immersion experiment shows definitively that a network computer configured this way can handle extremely data-intensive operations much more quickly than if processing were occurring within the confines of a single room."

All this computing is for a good cause. Daniilidis and his colleagues say tele-immersion may well revolutionize the way people communicate, allowing people on opposite ends of the country or world to feel temporarily as if they’re in each other’s presence. Key to tele-immersion’s realistic feel are a hemispherical bank of digital cameras that capture participants from a variety of angles and tracking gear worn on their heads. Combined with polarized glasses much like those worn at 3D movies, the setup creates subtly different images in each eye, much as our eyes do in daily life.

The tele-immersion collaboration involving Penn, UNC and the Pittsburgh Supercomputing Center is funded by the National Science Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>