Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A wink is enough to switch off the PC

15.11.2002


It is already possible for PC users to switch off simply by winking their eyes, but it is expected this will soon be possible wirelessly! Now in its start-up phase, the Academy of Finland’s Research Programme on Proactive Information Technology or PROACT includes a project dedicated to the development of wireless technology. One of the applications is a PC interface controlled by eye movement.



All five Academy research programmes launched during 2002 will benefit from international funding. In the case of PROACT, the Academy will be working closely with the French Ministry of Research and French research teams.

The technology is already in place


Bioelectric changes in human muscles are measured for various different purposes for instance in the field of health care. Senior Assistant Veikko Surakka from the University of Tampere has the job of coordinating one of the PROACT projects that is concerned with studying and testing wireless sensor technology for the measurement and interpretation of the physiological and bioelectric changes caused by emotional reactions in humans. The main focus will be on the measurement of changes occurring in the heart, brain, muscles as well as in the electric function of the eye.

The sensor technology is already there in place. Work in the project coordinated by Veikko Surakka will be concentrated on developing prototypes of wireless sensors as well as wireless measurement technology and data transfer:

‘We will be looking to introduce the first prototype of a wireless sensor patch that is applied to the skin by around spring 2004,’ Dr Surakka says.

One of the most exciting applications for real-time recording of the electric function of the eye and muscles is in the development a PC interface that can be operated without hands.

Apart from the operation of PCs and household appliances, reliable wireless measurement systems may have useful applications in the field of health care. One of the PROACT projects will be working to develop an ordinary-looking chair that measures the cardiac function of the person sitting by means of wireless data transfer techniques. A proactive application of the electromechanical EMFi film that measures sound and movement is an intelligent underfloor safety system for homes of the frail elderly: the film can detect when the occupant has suffered a fall and needs help, and when the occupant is simply bending over to pick up something that has dropped on the floor.

One of the major current concerns in research on proactive technology is how to get different kinds of information systems to communicate with each other. Professor Juha Tuominen from the Helsinki University of Technology is coordinating a project concerned with the development of a middleware platform for the linking of mobile and fixed computer and datacommunications systems. This kind of platform will make it easier for mobile emergency units to maintain contact with headquarters. This project also involves French researchers.

Three Finnish-French projects in the programme

The PROACT programme comprises three independent projects and 11 consortia that involve at least two research teams with a joint research plan. During the three years of the programme from 2002 through to 2005, Academy funding will amount to more than EUR 5.3 million. The French Ministry of Research has earmarked EUR 2 million that will be spent on supporting three projects; one of these projects is funded from the Finnish side by the National Technology Agency Tekes.

‘Although foreign projects have not had a very prominent role in these first jointly funded Academy programmes, international funding cooperation has now got off the ground and the experiences so far have been very good. As we continue our efforts to further develop international cooperation, it is important to bear in mind that the themes for research programmes and the funding partners must be chosen with a view to the needs of cooperation,’ says Academy of Finland Director of Research Anneli Pauli.

Research results in the public domain

Right now, research in the field of proactive information technology is booming the world over. A number of projects are underway in the United States, funding is made available to this line of research through the 5th and 6th EU framework programmes, and a major new research programme has just been launched in Britain. In addition many major IT companies including Microsoft, Hewlett Packard, IBM, AT&T, Sony and Nokia all have their own proactive projects.

‘If Finland wants to keep abreast of things, this is the right time to start up a research programme in this field,’ says coordinator of the PROACT Programme Greger Lindén.

‘Several Finnish companies have gone into production with small proactive IT devices, and the National Technology Agency is funding R&D in applications. Funding from the Academy is absolutely crucial for this kind of research: none of the applications would be possible in the first place without basic research. And of course all the research results are in the public domain,’ Greger Lindén points out.

What is proactive technology?

Proactive information technology is designed to look ahead and anticipate the user’s intentions, to adapt to the situation and the individual user and to respond accordingly. A proactive system may be incorporated in a smart environment, in the auxiliary devices used by the elderly and the disabled, or it can be worn in clothes.

Marja Pemberton | alfa
Further information:
http://www.aka.fi/eng

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>