Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A wink is enough to switch off the PC


It is already possible for PC users to switch off simply by winking their eyes, but it is expected this will soon be possible wirelessly! Now in its start-up phase, the Academy of Finland’s Research Programme on Proactive Information Technology or PROACT includes a project dedicated to the development of wireless technology. One of the applications is a PC interface controlled by eye movement.

All five Academy research programmes launched during 2002 will benefit from international funding. In the case of PROACT, the Academy will be working closely with the French Ministry of Research and French research teams.

The technology is already in place

Bioelectric changes in human muscles are measured for various different purposes for instance in the field of health care. Senior Assistant Veikko Surakka from the University of Tampere has the job of coordinating one of the PROACT projects that is concerned with studying and testing wireless sensor technology for the measurement and interpretation of the physiological and bioelectric changes caused by emotional reactions in humans. The main focus will be on the measurement of changes occurring in the heart, brain, muscles as well as in the electric function of the eye.

The sensor technology is already there in place. Work in the project coordinated by Veikko Surakka will be concentrated on developing prototypes of wireless sensors as well as wireless measurement technology and data transfer:

‘We will be looking to introduce the first prototype of a wireless sensor patch that is applied to the skin by around spring 2004,’ Dr Surakka says.

One of the most exciting applications for real-time recording of the electric function of the eye and muscles is in the development a PC interface that can be operated without hands.

Apart from the operation of PCs and household appliances, reliable wireless measurement systems may have useful applications in the field of health care. One of the PROACT projects will be working to develop an ordinary-looking chair that measures the cardiac function of the person sitting by means of wireless data transfer techniques. A proactive application of the electromechanical EMFi film that measures sound and movement is an intelligent underfloor safety system for homes of the frail elderly: the film can detect when the occupant has suffered a fall and needs help, and when the occupant is simply bending over to pick up something that has dropped on the floor.

One of the major current concerns in research on proactive technology is how to get different kinds of information systems to communicate with each other. Professor Juha Tuominen from the Helsinki University of Technology is coordinating a project concerned with the development of a middleware platform for the linking of mobile and fixed computer and datacommunications systems. This kind of platform will make it easier for mobile emergency units to maintain contact with headquarters. This project also involves French researchers.

Three Finnish-French projects in the programme

The PROACT programme comprises three independent projects and 11 consortia that involve at least two research teams with a joint research plan. During the three years of the programme from 2002 through to 2005, Academy funding will amount to more than EUR 5.3 million. The French Ministry of Research has earmarked EUR 2 million that will be spent on supporting three projects; one of these projects is funded from the Finnish side by the National Technology Agency Tekes.

‘Although foreign projects have not had a very prominent role in these first jointly funded Academy programmes, international funding cooperation has now got off the ground and the experiences so far have been very good. As we continue our efforts to further develop international cooperation, it is important to bear in mind that the themes for research programmes and the funding partners must be chosen with a view to the needs of cooperation,’ says Academy of Finland Director of Research Anneli Pauli.

Research results in the public domain

Right now, research in the field of proactive information technology is booming the world over. A number of projects are underway in the United States, funding is made available to this line of research through the 5th and 6th EU framework programmes, and a major new research programme has just been launched in Britain. In addition many major IT companies including Microsoft, Hewlett Packard, IBM, AT&T, Sony and Nokia all have their own proactive projects.

‘If Finland wants to keep abreast of things, this is the right time to start up a research programme in this field,’ says coordinator of the PROACT Programme Greger Lindén.

‘Several Finnish companies have gone into production with small proactive IT devices, and the National Technology Agency is funding R&D in applications. Funding from the Academy is absolutely crucial for this kind of research: none of the applications would be possible in the first place without basic research. And of course all the research results are in the public domain,’ Greger Lindén points out.

What is proactive technology?

Proactive information technology is designed to look ahead and anticipate the user’s intentions, to adapt to the situation and the individual user and to respond accordingly. A proactive system may be incorporated in a smart environment, in the auxiliary devices used by the elderly and the disabled, or it can be worn in clothes.

Marja Pemberton | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>