Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A wink is enough to switch off the PC

15.11.2002


It is already possible for PC users to switch off simply by winking their eyes, but it is expected this will soon be possible wirelessly! Now in its start-up phase, the Academy of Finland’s Research Programme on Proactive Information Technology or PROACT includes a project dedicated to the development of wireless technology. One of the applications is a PC interface controlled by eye movement.



All five Academy research programmes launched during 2002 will benefit from international funding. In the case of PROACT, the Academy will be working closely with the French Ministry of Research and French research teams.

The technology is already in place


Bioelectric changes in human muscles are measured for various different purposes for instance in the field of health care. Senior Assistant Veikko Surakka from the University of Tampere has the job of coordinating one of the PROACT projects that is concerned with studying and testing wireless sensor technology for the measurement and interpretation of the physiological and bioelectric changes caused by emotional reactions in humans. The main focus will be on the measurement of changes occurring in the heart, brain, muscles as well as in the electric function of the eye.

The sensor technology is already there in place. Work in the project coordinated by Veikko Surakka will be concentrated on developing prototypes of wireless sensors as well as wireless measurement technology and data transfer:

‘We will be looking to introduce the first prototype of a wireless sensor patch that is applied to the skin by around spring 2004,’ Dr Surakka says.

One of the most exciting applications for real-time recording of the electric function of the eye and muscles is in the development a PC interface that can be operated without hands.

Apart from the operation of PCs and household appliances, reliable wireless measurement systems may have useful applications in the field of health care. One of the PROACT projects will be working to develop an ordinary-looking chair that measures the cardiac function of the person sitting by means of wireless data transfer techniques. A proactive application of the electromechanical EMFi film that measures sound and movement is an intelligent underfloor safety system for homes of the frail elderly: the film can detect when the occupant has suffered a fall and needs help, and when the occupant is simply bending over to pick up something that has dropped on the floor.

One of the major current concerns in research on proactive technology is how to get different kinds of information systems to communicate with each other. Professor Juha Tuominen from the Helsinki University of Technology is coordinating a project concerned with the development of a middleware platform for the linking of mobile and fixed computer and datacommunications systems. This kind of platform will make it easier for mobile emergency units to maintain contact with headquarters. This project also involves French researchers.

Three Finnish-French projects in the programme

The PROACT programme comprises three independent projects and 11 consortia that involve at least two research teams with a joint research plan. During the three years of the programme from 2002 through to 2005, Academy funding will amount to more than EUR 5.3 million. The French Ministry of Research has earmarked EUR 2 million that will be spent on supporting three projects; one of these projects is funded from the Finnish side by the National Technology Agency Tekes.

‘Although foreign projects have not had a very prominent role in these first jointly funded Academy programmes, international funding cooperation has now got off the ground and the experiences so far have been very good. As we continue our efforts to further develop international cooperation, it is important to bear in mind that the themes for research programmes and the funding partners must be chosen with a view to the needs of cooperation,’ says Academy of Finland Director of Research Anneli Pauli.

Research results in the public domain

Right now, research in the field of proactive information technology is booming the world over. A number of projects are underway in the United States, funding is made available to this line of research through the 5th and 6th EU framework programmes, and a major new research programme has just been launched in Britain. In addition many major IT companies including Microsoft, Hewlett Packard, IBM, AT&T, Sony and Nokia all have their own proactive projects.

‘If Finland wants to keep abreast of things, this is the right time to start up a research programme in this field,’ says coordinator of the PROACT Programme Greger Lindén.

‘Several Finnish companies have gone into production with small proactive IT devices, and the National Technology Agency is funding R&D in applications. Funding from the Academy is absolutely crucial for this kind of research: none of the applications would be possible in the first place without basic research. And of course all the research results are in the public domain,’ Greger Lindén points out.

What is proactive technology?

Proactive information technology is designed to look ahead and anticipate the user’s intentions, to adapt to the situation and the individual user and to respond accordingly. A proactive system may be incorporated in a smart environment, in the auxiliary devices used by the elderly and the disabled, or it can be worn in clothes.

Marja Pemberton | alfa
Further information:
http://www.aka.fi/eng

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>