Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A wink is enough to switch off the PC

15.11.2002


It is already possible for PC users to switch off simply by winking their eyes, but it is expected this will soon be possible wirelessly! Now in its start-up phase, the Academy of Finland’s Research Programme on Proactive Information Technology or PROACT includes a project dedicated to the development of wireless technology. One of the applications is a PC interface controlled by eye movement.



All five Academy research programmes launched during 2002 will benefit from international funding. In the case of PROACT, the Academy will be working closely with the French Ministry of Research and French research teams.

The technology is already in place


Bioelectric changes in human muscles are measured for various different purposes for instance in the field of health care. Senior Assistant Veikko Surakka from the University of Tampere has the job of coordinating one of the PROACT projects that is concerned with studying and testing wireless sensor technology for the measurement and interpretation of the physiological and bioelectric changes caused by emotional reactions in humans. The main focus will be on the measurement of changes occurring in the heart, brain, muscles as well as in the electric function of the eye.

The sensor technology is already there in place. Work in the project coordinated by Veikko Surakka will be concentrated on developing prototypes of wireless sensors as well as wireless measurement technology and data transfer:

‘We will be looking to introduce the first prototype of a wireless sensor patch that is applied to the skin by around spring 2004,’ Dr Surakka says.

One of the most exciting applications for real-time recording of the electric function of the eye and muscles is in the development a PC interface that can be operated without hands.

Apart from the operation of PCs and household appliances, reliable wireless measurement systems may have useful applications in the field of health care. One of the PROACT projects will be working to develop an ordinary-looking chair that measures the cardiac function of the person sitting by means of wireless data transfer techniques. A proactive application of the electromechanical EMFi film that measures sound and movement is an intelligent underfloor safety system for homes of the frail elderly: the film can detect when the occupant has suffered a fall and needs help, and when the occupant is simply bending over to pick up something that has dropped on the floor.

One of the major current concerns in research on proactive technology is how to get different kinds of information systems to communicate with each other. Professor Juha Tuominen from the Helsinki University of Technology is coordinating a project concerned with the development of a middleware platform for the linking of mobile and fixed computer and datacommunications systems. This kind of platform will make it easier for mobile emergency units to maintain contact with headquarters. This project also involves French researchers.

Three Finnish-French projects in the programme

The PROACT programme comprises three independent projects and 11 consortia that involve at least two research teams with a joint research plan. During the three years of the programme from 2002 through to 2005, Academy funding will amount to more than EUR 5.3 million. The French Ministry of Research has earmarked EUR 2 million that will be spent on supporting three projects; one of these projects is funded from the Finnish side by the National Technology Agency Tekes.

‘Although foreign projects have not had a very prominent role in these first jointly funded Academy programmes, international funding cooperation has now got off the ground and the experiences so far have been very good. As we continue our efforts to further develop international cooperation, it is important to bear in mind that the themes for research programmes and the funding partners must be chosen with a view to the needs of cooperation,’ says Academy of Finland Director of Research Anneli Pauli.

Research results in the public domain

Right now, research in the field of proactive information technology is booming the world over. A number of projects are underway in the United States, funding is made available to this line of research through the 5th and 6th EU framework programmes, and a major new research programme has just been launched in Britain. In addition many major IT companies including Microsoft, Hewlett Packard, IBM, AT&T, Sony and Nokia all have their own proactive projects.

‘If Finland wants to keep abreast of things, this is the right time to start up a research programme in this field,’ says coordinator of the PROACT Programme Greger Lindén.

‘Several Finnish companies have gone into production with small proactive IT devices, and the National Technology Agency is funding R&D in applications. Funding from the Academy is absolutely crucial for this kind of research: none of the applications would be possible in the first place without basic research. And of course all the research results are in the public domain,’ Greger Lindén points out.

What is proactive technology?

Proactive information technology is designed to look ahead and anticipate the user’s intentions, to adapt to the situation and the individual user and to respond accordingly. A proactive system may be incorporated in a smart environment, in the auxiliary devices used by the elderly and the disabled, or it can be worn in clothes.

Marja Pemberton | alfa
Further information:
http://www.aka.fi/eng

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>