Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Alberta physicist helps transfer data at world record pace

14.11.2002


University of Alberta physicist was part of a Canadian research team which recently set a WORLD RECORD for high-speed disk-to-disk transfer of research data.



Bryan Caron of the University of Alberta’s Centre for Subatomic Research was a leading member of the team, which performed the record-breaking demonstration.

The rates achieved were equivalent to transferring all the data from a full-length DVD movie from one part of the world to another in less than 60 seconds, or a full compact disk in less than eight seconds.


Within three hours, Caron’s group successfully moved one terabyte of research data--equivalent to roughly 1,500 CDs from TRIUMF, the particle physics lab in Vancouver, to CERN, the famed international particle physics lab in Geneva.

The team created a dedicated "light path" that stretched over 12,000 km, the longest-known single-hop network. This allowed researchers to bypass the public Internet and establish a new transatlantic superhighway. In doing so, they doubled a speed record previously set by a U.S. team.

James Pinfold, Director of the Centre for Subatomic Research at the University of Alberta, was pleased with the success of this trial.

"We are now coming to grips with the practical problems of establishing a world-wide computational grid to process the unprecedented amounts of data that will be generated by the ATLAS experiment when it begins to operate in 2007," said Pinfold, who speaks for ATLAS Canada, the Canadian contingent of an international collaboration of 2,000 physicists. The ATLAS experiment will employ the world’s highest-energy collider (the LHC) to explore the fundamental nature of matter and the basic forces which shape our universe.

"The only way to deal with such unprecedented amounts of data is to utilize a new class of computing infrastructure--the GRID. The GRID is the World Wide Web of the 21st century," said Pinfold.

The GRID will eventually link together computers, supercomputers and storage centers across the globe to create a world computer that makes it possible for the increasingly large and international modern scientific collaborations to share resources on a mammoth scale.

This allows globally distributed groups to work together in ways that were previously impossible. The GRID "world computer" must have lightning fast and reliable communication of information between its nodes.

"What Bryan Caron and the other members of the Canadian team demonstrated in this latest speed test is that we are well on the way to achieving the kind of very high speed interconnections that are absolutely vital for LHC’s GRID to function effectively", said Pinfold.

Recently researchers at the University of Alberta reported a GRID-like development where the computing power of 1360 computers at 21 facilities across Canada were harnessed to form a Canadian Internetworked Supercomputer (CISS), in order to study the interactions of chiral molecules.

"The developing GRID concept will probably face its first tough challenge when it is called upon to handle the data from the LHC," maintains Pinfold. "The LHC GRID will connect around 140 institutions in 35 countries around the world. The computing resources deployed in the LHC GRID will be immense, equivalent to tens of thousands of state-of-the-art PCs, with disk storage totaling of the order of 10 petabytes."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>