Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Alberta physicist helps transfer data at world record pace

14.11.2002


University of Alberta physicist was part of a Canadian research team which recently set a WORLD RECORD for high-speed disk-to-disk transfer of research data.



Bryan Caron of the University of Alberta’s Centre for Subatomic Research was a leading member of the team, which performed the record-breaking demonstration.

The rates achieved were equivalent to transferring all the data from a full-length DVD movie from one part of the world to another in less than 60 seconds, or a full compact disk in less than eight seconds.


Within three hours, Caron’s group successfully moved one terabyte of research data--equivalent to roughly 1,500 CDs from TRIUMF, the particle physics lab in Vancouver, to CERN, the famed international particle physics lab in Geneva.

The team created a dedicated "light path" that stretched over 12,000 km, the longest-known single-hop network. This allowed researchers to bypass the public Internet and establish a new transatlantic superhighway. In doing so, they doubled a speed record previously set by a U.S. team.

James Pinfold, Director of the Centre for Subatomic Research at the University of Alberta, was pleased with the success of this trial.

"We are now coming to grips with the practical problems of establishing a world-wide computational grid to process the unprecedented amounts of data that will be generated by the ATLAS experiment when it begins to operate in 2007," said Pinfold, who speaks for ATLAS Canada, the Canadian contingent of an international collaboration of 2,000 physicists. The ATLAS experiment will employ the world’s highest-energy collider (the LHC) to explore the fundamental nature of matter and the basic forces which shape our universe.

"The only way to deal with such unprecedented amounts of data is to utilize a new class of computing infrastructure--the GRID. The GRID is the World Wide Web of the 21st century," said Pinfold.

The GRID will eventually link together computers, supercomputers and storage centers across the globe to create a world computer that makes it possible for the increasingly large and international modern scientific collaborations to share resources on a mammoth scale.

This allows globally distributed groups to work together in ways that were previously impossible. The GRID "world computer" must have lightning fast and reliable communication of information between its nodes.

"What Bryan Caron and the other members of the Canadian team demonstrated in this latest speed test is that we are well on the way to achieving the kind of very high speed interconnections that are absolutely vital for LHC’s GRID to function effectively", said Pinfold.

Recently researchers at the University of Alberta reported a GRID-like development where the computing power of 1360 computers at 21 facilities across Canada were harnessed to form a Canadian Internetworked Supercomputer (CISS), in order to study the interactions of chiral molecules.

"The developing GRID concept will probably face its first tough challenge when it is called upon to handle the data from the LHC," maintains Pinfold. "The LHC GRID will connect around 140 institutions in 35 countries around the world. The computing resources deployed in the LHC GRID will be immense, equivalent to tens of thousands of state-of-the-art PCs, with disk storage totaling of the order of 10 petabytes."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>