Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Alberta physicist helps transfer data at world record pace

14.11.2002


University of Alberta physicist was part of a Canadian research team which recently set a WORLD RECORD for high-speed disk-to-disk transfer of research data.



Bryan Caron of the University of Alberta’s Centre for Subatomic Research was a leading member of the team, which performed the record-breaking demonstration.

The rates achieved were equivalent to transferring all the data from a full-length DVD movie from one part of the world to another in less than 60 seconds, or a full compact disk in less than eight seconds.


Within three hours, Caron’s group successfully moved one terabyte of research data--equivalent to roughly 1,500 CDs from TRIUMF, the particle physics lab in Vancouver, to CERN, the famed international particle physics lab in Geneva.

The team created a dedicated "light path" that stretched over 12,000 km, the longest-known single-hop network. This allowed researchers to bypass the public Internet and establish a new transatlantic superhighway. In doing so, they doubled a speed record previously set by a U.S. team.

James Pinfold, Director of the Centre for Subatomic Research at the University of Alberta, was pleased with the success of this trial.

"We are now coming to grips with the practical problems of establishing a world-wide computational grid to process the unprecedented amounts of data that will be generated by the ATLAS experiment when it begins to operate in 2007," said Pinfold, who speaks for ATLAS Canada, the Canadian contingent of an international collaboration of 2,000 physicists. The ATLAS experiment will employ the world’s highest-energy collider (the LHC) to explore the fundamental nature of matter and the basic forces which shape our universe.

"The only way to deal with such unprecedented amounts of data is to utilize a new class of computing infrastructure--the GRID. The GRID is the World Wide Web of the 21st century," said Pinfold.

The GRID will eventually link together computers, supercomputers and storage centers across the globe to create a world computer that makes it possible for the increasingly large and international modern scientific collaborations to share resources on a mammoth scale.

This allows globally distributed groups to work together in ways that were previously impossible. The GRID "world computer" must have lightning fast and reliable communication of information between its nodes.

"What Bryan Caron and the other members of the Canadian team demonstrated in this latest speed test is that we are well on the way to achieving the kind of very high speed interconnections that are absolutely vital for LHC’s GRID to function effectively", said Pinfold.

Recently researchers at the University of Alberta reported a GRID-like development where the computing power of 1360 computers at 21 facilities across Canada were harnessed to form a Canadian Internetworked Supercomputer (CISS), in order to study the interactions of chiral molecules.

"The developing GRID concept will probably face its first tough challenge when it is called upon to handle the data from the LHC," maintains Pinfold. "The LHC GRID will connect around 140 institutions in 35 countries around the world. The computing resources deployed in the LHC GRID will be immense, equivalent to tens of thousands of state-of-the-art PCs, with disk storage totaling of the order of 10 petabytes."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>