Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Alberta physicist helps transfer data at world record pace

14.11.2002


University of Alberta physicist was part of a Canadian research team which recently set a WORLD RECORD for high-speed disk-to-disk transfer of research data.



Bryan Caron of the University of Alberta’s Centre for Subatomic Research was a leading member of the team, which performed the record-breaking demonstration.

The rates achieved were equivalent to transferring all the data from a full-length DVD movie from one part of the world to another in less than 60 seconds, or a full compact disk in less than eight seconds.


Within three hours, Caron’s group successfully moved one terabyte of research data--equivalent to roughly 1,500 CDs from TRIUMF, the particle physics lab in Vancouver, to CERN, the famed international particle physics lab in Geneva.

The team created a dedicated "light path" that stretched over 12,000 km, the longest-known single-hop network. This allowed researchers to bypass the public Internet and establish a new transatlantic superhighway. In doing so, they doubled a speed record previously set by a U.S. team.

James Pinfold, Director of the Centre for Subatomic Research at the University of Alberta, was pleased with the success of this trial.

"We are now coming to grips with the practical problems of establishing a world-wide computational grid to process the unprecedented amounts of data that will be generated by the ATLAS experiment when it begins to operate in 2007," said Pinfold, who speaks for ATLAS Canada, the Canadian contingent of an international collaboration of 2,000 physicists. The ATLAS experiment will employ the world’s highest-energy collider (the LHC) to explore the fundamental nature of matter and the basic forces which shape our universe.

"The only way to deal with such unprecedented amounts of data is to utilize a new class of computing infrastructure--the GRID. The GRID is the World Wide Web of the 21st century," said Pinfold.

The GRID will eventually link together computers, supercomputers and storage centers across the globe to create a world computer that makes it possible for the increasingly large and international modern scientific collaborations to share resources on a mammoth scale.

This allows globally distributed groups to work together in ways that were previously impossible. The GRID "world computer" must have lightning fast and reliable communication of information between its nodes.

"What Bryan Caron and the other members of the Canadian team demonstrated in this latest speed test is that we are well on the way to achieving the kind of very high speed interconnections that are absolutely vital for LHC’s GRID to function effectively", said Pinfold.

Recently researchers at the University of Alberta reported a GRID-like development where the computing power of 1360 computers at 21 facilities across Canada were harnessed to form a Canadian Internetworked Supercomputer (CISS), in order to study the interactions of chiral molecules.

"The developing GRID concept will probably face its first tough challenge when it is called upon to handle the data from the LHC," maintains Pinfold. "The LHC GRID will connect around 140 institutions in 35 countries around the world. The computing resources deployed in the LHC GRID will be immense, equivalent to tens of thousands of state-of-the-art PCs, with disk storage totaling of the order of 10 petabytes."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>