Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Databases can heal themselves on-the-fly

31.10.2002


An innovative new software can detect and correct a database impaired by an attack while the database system continues to process transactions, says a Penn State researcher.



"We simulated attackers’ behaviors on a database and then monitored the response of the database," said Dr. Peng Liu, assistant professor of information sciences and technology. "We can’t prevent attackers from getting in, but with this technology, the database can heal itself on-the-fly."

Liu performed the research underlying the technology while a faculty member at the University of Maryland – Baltimore County. He has since established his research team, the Cyber Security Group, in Penn State’s School of Information Sciences and Technology. The team’s areas of expertise include network security, intrusion detection and masking, survivable systems and attack prediction.


All databases are vulnerable to being breached by unauthorized users, former employees or hackers looking for a challenge. With more databases than ever, experts expect the number of database attacks to continue to rise. That leaves at risk such data-intensive applications as e-commerce, air traffic control, command-and-control, and credit card billing systems.

Although many intrusions can be detected soon after the database is breached, the damage usually doesn’t stop with the initial transaction. Subsequent transactions and data updating can spread the damage.

Existing recovery software creates its own problems. Rolling back activity to the initial damage is expensive because the work of many unaffected transactions by good users will be lost, Liu said. Second, for commercial databases, suspending the database to clean up the damage is undesirable, and in many cases, unacceptable. International banks, for instance, need 24-7 access to account data.

The family of algorithms developed by Liu and others can detect single, multiple or simultaneous attacks. But it does more. It isolates malicious transactions, so that many benign ones are preserved from being affected and having to be re-executed. It also repairs the database by containing the set of corrupted data objects and then, by undoing or unwinding the direct and indirect effects of the attack.

The technology has another advantage: The software can be adapted for static and on-the-fly repairs. Because it’s dynamic, new transactions can continue even while the database is being repaired. Furthermore, the new technology is intelligent and adaptive.

"The database can adapt its own behavior and reconfigure itself based on the attack," Liu said.

A prototype of this attack-resilient software is being tested by the Cyber Security Group and the U.S. Air Force.



Liu’s research was funded by the Air Force and the Defense Advanced Research Projects Agency. Subsequent grants have come from the National Science Foundation, the Air Force, DARPA and the U.S. Department of Energy.

The Penn State researcher and his co-authors, Paul Ammann and Sushil Jajodia, both of George Mason University, published their findings in the paper, "Recovery From Malicious Transactions," in the September issue of IEEE Transactions on Knowledge and Data Engineering.


Margaret Hopkins | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>