Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Databases can heal themselves on-the-fly

31.10.2002


An innovative new software can detect and correct a database impaired by an attack while the database system continues to process transactions, says a Penn State researcher.



"We simulated attackers’ behaviors on a database and then monitored the response of the database," said Dr. Peng Liu, assistant professor of information sciences and technology. "We can’t prevent attackers from getting in, but with this technology, the database can heal itself on-the-fly."

Liu performed the research underlying the technology while a faculty member at the University of Maryland – Baltimore County. He has since established his research team, the Cyber Security Group, in Penn State’s School of Information Sciences and Technology. The team’s areas of expertise include network security, intrusion detection and masking, survivable systems and attack prediction.


All databases are vulnerable to being breached by unauthorized users, former employees or hackers looking for a challenge. With more databases than ever, experts expect the number of database attacks to continue to rise. That leaves at risk such data-intensive applications as e-commerce, air traffic control, command-and-control, and credit card billing systems.

Although many intrusions can be detected soon after the database is breached, the damage usually doesn’t stop with the initial transaction. Subsequent transactions and data updating can spread the damage.

Existing recovery software creates its own problems. Rolling back activity to the initial damage is expensive because the work of many unaffected transactions by good users will be lost, Liu said. Second, for commercial databases, suspending the database to clean up the damage is undesirable, and in many cases, unacceptable. International banks, for instance, need 24-7 access to account data.

The family of algorithms developed by Liu and others can detect single, multiple or simultaneous attacks. But it does more. It isolates malicious transactions, so that many benign ones are preserved from being affected and having to be re-executed. It also repairs the database by containing the set of corrupted data objects and then, by undoing or unwinding the direct and indirect effects of the attack.

The technology has another advantage: The software can be adapted for static and on-the-fly repairs. Because it’s dynamic, new transactions can continue even while the database is being repaired. Furthermore, the new technology is intelligent and adaptive.

"The database can adapt its own behavior and reconfigure itself based on the attack," Liu said.

A prototype of this attack-resilient software is being tested by the Cyber Security Group and the U.S. Air Force.



Liu’s research was funded by the Air Force and the Defense Advanced Research Projects Agency. Subsequent grants have come from the National Science Foundation, the Air Force, DARPA and the U.S. Department of Energy.

The Penn State researcher and his co-authors, Paul Ammann and Sushil Jajodia, both of George Mason University, published their findings in the paper, "Recovery From Malicious Transactions," in the September issue of IEEE Transactions on Knowledge and Data Engineering.


Margaret Hopkins | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>