Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper discusses circuitry for quantum computing

24.10.2002



The next radically different means of information processing will be quantum computing, which researchers say will use the principles of quantum mechanics to perform complex calculations in a fraction of the time needed by the world’s fastest supercomputers.

A paper published recently in Physical Review Letters (Nov. 4 issue) has proposed an experimentally realizable circuit and an efficient scheme to implement scalable quantum computing. The ability to scale up the technology from the one or two-qubit experiments that are common in the laboratory to systems involving many qubits is what will finally make it possible to actually build a quantum computer.

"Scalable quantum computing with Josephson charge qubits," was written by Franco Nori of the University of Michigan Physics Department and the Institute of Physical and Chemical Research (RIKEN) and two colleagues, J.Q. You from RIKEN and J.S. Tsai from RIKEN and the NEC Fundamental Research Laboratories.



Quantum computing is very different from the standard computers used today. Today’s computers process information using bits, each one equal to either 0 or 1. Quantum information processing uses quantum versions of these bits, individual atoms or subatomic particles called qubits. These qubits can be equal to 0, to1, or even both 0 and 1 at the same time. The ability to manipulate these superpositions of 0 and 1 is what will allow quantum computers to process complex information so quickly, since any given qubit can occupy either position.

In order to implement quantum information technology, it will be necessary to prepare, manipulate and measure the fragile quantum state of a system. "The first steps in this field have mostly focused on the study of single qubits," Nori said. "But constructing a large quantum computer will mean scaling up to very many qubits, and controlling the connectivity between them. These are two of the major stumbling blocks to achieving practical quantum computing and we believe our method can efficiently solve these two central problems. In addition, a series of operations are proposed for achieving efficient quantum computations.

"We have proposed a way to solve a central problem in quantum computing - how to select two qubits, among very many, and make them interact with each other, even though they might not be nearest neighbors, as well as how to perform efficient quantum computing operations with them," Nori said. Diagrams illustrating the operation of the system can be seen at http://www.umich.edu/~newsinfo/Releases/2002/Oct02/img/micro2.gif


A copy of the paper (no. 197902) can be found here. For more information, contact Franco Nori at nori@umich.edu or visit www.physics.lsa.umich.edu/nea/ and www.riken.go.jp/.

The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Web: www.umich.edu/~newsinfo

Judy Steeh | EurekAlert!
Further information:
http://ojps.aip.org/dbt/dbt.jsp?KEY=PRLTAO&Volume=89&Issue=19
http://www.physics.lsa.umich.edu/nea/
http://www.riken.go.jp/

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>