Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software tool will help engineers design jet engines

14.10.2002


Purdue University researchers have created a software tool that is more than 100 times faster than other programs used by engineers to improve jet engine designs



The software analyzes engine models and quickly extracts information that indicates whether the design is mechanically sound, said Mario Rotea, a professor in Purdue’s School of Aeronautics and Astronautics.

Considering the complex inner workings of a jet engine, software aimed at predicting how well a new design will function can be cumbersome and time-consuming. Jet engines house numerous rotating disks containing blades. The mechanical properties of these blades are difficult to predict because they change as they wear and because no two blades are perfectly identical: they emerge from manufacturing with minute variations in geometric shape and mechanical properties.


"But even tiny variations can lead to drastic changes in vibration levels, compromising engine performance and reliability," Rotea said.

Conventional software aimed at evaluating the mechanical properties of blades can take weeks or longer to predict how well the "bladed disks" will work.

However, time is money in industry, and for efficiency’s sake engineers cannot afford to wait weeks for a program to crunch data.

"If it takes a month to give you the answer, that’s not very practical," Rotea said. "What we developed was a technique that is much more intelligent."

Rotea presented new findings about the software tool in July during the 38th Joint Propulsion Conference and Exhibit in Indianapolis and also during the 15th World Congress on Automatic Control in Barcelona, Spain.

Engine designers use computer models to test designs before actually building an engine. The models predict how the multitude of critical engine parts will react to factors such as wear or damage and manufacturing variations.

"That’s because it’s less expensive to use models," Rotea said. "Industry has the ability to develop good models to analyze the vibratory responses of bladed disks. But these models are very complicated. They contain lots of unpredictable parameters, and what was lacking, in my opinion, was a good method to analyze those models to help them extract the numbers they need to say, ’This is a good design or this is a bad design.’"

The software he developed with former graduate student Fernando D’Amato is based on an "optimization algorithm," which is a step-by-step procedure for solving a mathematical problem. This algorithm calculates the worst-case vibration level of the blades due to variations in mechanical properties.

A model of the bladed disk and the range of the possible variations are required to run this algorithm. Although it is difficult to predict exactly which variations a specific blade will have, engineers know what the range is.

"Some parameters change during the life of the engine," Rotea said. "For example, you have blades that get nicked or they wear and they change mechanical properties."

"How do you incorporate that into the model? You cannot predict all those variations that the engine will see in the field. But if you know the ranges for these parameter variations, you can determine the worst-case effect the parameter changes will have in the blade stress and vibration levels without actually searching through all possibilities.

"What we did was to develop an optimization algorithm that calculates the things they want much more efficiently," he said. "We use optimization not to do the design but to actually predict the worst-case behavior over a known range of parameters."

The algorithm analyzes one blade, or a small group of blades, and deduces the worst-case vibration level of any blade in the disk.

The time it takes to calculate the worst-case vibration level grows with the number of parameters that must be considered. The optimization algorithm that was developed by Rotea and D’Amato is about one and a half times faster for each parameter, compared with more conventional software tools.

"The more parameters there are, the more time is saved, Rotea said. "That means bigger problems are solved even more efficiently than smaller ones. If there are 60 parameters, the time savings is very large."

He estimates that, for the average job, the tool is more than 100 times faster than other tools on the market.

The work has been funded by the National Science Foundation and private industry.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Mario Rotea, (765) 494-6212, rotea@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/020903.Rotea.optimize.html

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>