Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Software tool will help engineers design jet engines


Purdue University researchers have created a software tool that is more than 100 times faster than other programs used by engineers to improve jet engine designs

The software analyzes engine models and quickly extracts information that indicates whether the design is mechanically sound, said Mario Rotea, a professor in Purdue’s School of Aeronautics and Astronautics.

Considering the complex inner workings of a jet engine, software aimed at predicting how well a new design will function can be cumbersome and time-consuming. Jet engines house numerous rotating disks containing blades. The mechanical properties of these blades are difficult to predict because they change as they wear and because no two blades are perfectly identical: they emerge from manufacturing with minute variations in geometric shape and mechanical properties.

"But even tiny variations can lead to drastic changes in vibration levels, compromising engine performance and reliability," Rotea said.

Conventional software aimed at evaluating the mechanical properties of blades can take weeks or longer to predict how well the "bladed disks" will work.

However, time is money in industry, and for efficiency’s sake engineers cannot afford to wait weeks for a program to crunch data.

"If it takes a month to give you the answer, that’s not very practical," Rotea said. "What we developed was a technique that is much more intelligent."

Rotea presented new findings about the software tool in July during the 38th Joint Propulsion Conference and Exhibit in Indianapolis and also during the 15th World Congress on Automatic Control in Barcelona, Spain.

Engine designers use computer models to test designs before actually building an engine. The models predict how the multitude of critical engine parts will react to factors such as wear or damage and manufacturing variations.

"That’s because it’s less expensive to use models," Rotea said. "Industry has the ability to develop good models to analyze the vibratory responses of bladed disks. But these models are very complicated. They contain lots of unpredictable parameters, and what was lacking, in my opinion, was a good method to analyze those models to help them extract the numbers they need to say, ’This is a good design or this is a bad design.’"

The software he developed with former graduate student Fernando D’Amato is based on an "optimization algorithm," which is a step-by-step procedure for solving a mathematical problem. This algorithm calculates the worst-case vibration level of the blades due to variations in mechanical properties.

A model of the bladed disk and the range of the possible variations are required to run this algorithm. Although it is difficult to predict exactly which variations a specific blade will have, engineers know what the range is.

"Some parameters change during the life of the engine," Rotea said. "For example, you have blades that get nicked or they wear and they change mechanical properties."

"How do you incorporate that into the model? You cannot predict all those variations that the engine will see in the field. But if you know the ranges for these parameter variations, you can determine the worst-case effect the parameter changes will have in the blade stress and vibration levels without actually searching through all possibilities.

"What we did was to develop an optimization algorithm that calculates the things they want much more efficiently," he said. "We use optimization not to do the design but to actually predict the worst-case behavior over a known range of parameters."

The algorithm analyzes one blade, or a small group of blades, and deduces the worst-case vibration level of any blade in the disk.

The time it takes to calculate the worst-case vibration level grows with the number of parameters that must be considered. The optimization algorithm that was developed by Rotea and D’Amato is about one and a half times faster for each parameter, compared with more conventional software tools.

"The more parameters there are, the more time is saved, Rotea said. "That means bigger problems are solved even more efficiently than smaller ones. If there are 60 parameters, the time savings is very large."

He estimates that, for the average job, the tool is more than 100 times faster than other tools on the market.

The work has been funded by the National Science Foundation and private industry.

Writer: Emil Venere, (765) 494-4709,

Source: Mario Rotea, (765) 494-6212,

Purdue News Service: (765) 494-2096;

Emil Venere | Purdue News
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>