Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global high-quality digital video is unveiled

09.10.2002


The International Center for Advanced Internet Research (iCAIR) at Northwestern University and Path1 Network Technologies, Inc. have demonstrated an innovative capability for global, high-quality, high-performance digital video at the recent international iGrid2002 Conference in Amsterdam.

The biennial iGrid (International Grid) event is dedicated to showcasing leading-edge applications enabled by globally high-performance networks. This experiment demonstrated high-performance, end-to-end, real-time broadcast-quality video transported uncompressed from the StarLight facility in Chicago to SARA Reken- en Netwerkdiensten, in Amsterdam, a Dutch national expertise centre in the field of High-Performance Computing and High-Performance Networking.

The iGrid2002 conference focused on e-science, Grid and Virtual Laboratory applications enabled by high-performance global networks. iGrid presents the latest developments in these areas. World-wide virtual laboratory applications based on global high-performance optical networks are crucial to a wide-range of emerging science disciplines as well as to many industries. As part of a prototype global virtual laboratory demonstration, this project showed the potential for applications having access to significant amounts of bandwidth, allowing transmitting multiple simultaneous streams of uncompressed digital video at 270 Mbps (600 Mbps with Forward Error Correction).



In this demonstration, a Path 1 Cx1000 IP Video Gateways received a 270 Mbps CCIR-601 serial digital video stream, encapsulated the stream into IP and added specialized stream handling for transmission over a long haul Gigabit Ethernet connection. The Cx1000 was used because it is specifically optimized for providing high quality digital video over IP networks. It is also designed to take advantage of high-performance networks, not just for contending with today’s narrowband networks. This experiment also demonstrated the power of next-generation optical network services based on lambda-switching to deliver multiple streams of extremely high-quality digital video. With these types of networks, the constraints of the current Internet disappear.

"This type of high-performance digital video is a critical component to many composite applications like those being shown at iGRID2002, as well as to many standard applications," said Jim Chen, associate director of iCAIR and project manager for the demonstration.

"Path 1 Network Technologies is focused on developing hardware and software that will allow video, previously too bandwidth demanding for satellite or video terrestrial circuits, to be transmitted globally," said David Carnevale, vice president of marketing and sales for Path 1. "With 2.5 and 10 gigabit capabilities, uncompressed high-definition television and other high-resolution video services can be transmitted without the need for heavy compression of the signal."

The connections between Chicago and Amsterdam consisted of 2.5 Gbps (NetherLight) provisioned by SURFnet and 10 Gbps transatlantic links provisioned by SURFnet and StarLight. NetherLight is a state-of-the-art optical multi-gigabit/s connection between Amsterdam and Chicago, the two locations that compose the current center for next-generation, optical Internet research. This is the world’s first transatlantic link provisioned for research. This 2.5 Gbit/s lambda connection constitutes the basis for experiments with new technologies for a fully optical Internet.

The International Center for Advanced Internet Research, Northwestern University

Northwestern University’s International Center for Advanced Internet Research (iCAIR, www.icair.org) accelerates leading-edge innovation and enhanced global communications through advanced Internet technologies, in partnership with the international community, and national partners, including EVL at the University of Illinois (www.evl.uic.edu), the Math and Computer Science Division of Argonne National Lab (www.mcs.anl.gov), CANARIE (www.canarie.ca), SURFnet (Netherlands, www.surfnet.nl), APAN (Asia Pacific, www.apan.net) and CERN (Europe, www.cern.ch.) For more information about Northwestern University, go to www.northwestern.edu.

Path1

Path 1 Network Technologies Inc. provides technology, equipment and services to merge broadcast-quality video transport with IP/Ethernet broadband networks. At the core of the company’s capabilities is expertise in IP Quality-of-Service and global synchronization, backed up by multiple patents, and knowledge of broadcast video. Path 1 offers the only coast-to-coast tried and proven broadcast video over IP video networking solution. The company is developing several video networking gateway products for customers ranging from backbone transporters to Video-on-Demand hybrid IP/cable providers. See www.path1.com.

IGRID2002

iGrid, the biennial International Grid event, concentrates on visualizing what Grid can do. Virtual Laboratory technologies and bandwidths in excess of 10 gigabits per second, make it possible to demonstrate new applications and areas in network technology. Three-dimensional demonstrations will let you see and feel the power of applications using the latest global network capabilities. More than 28 scientific groups from all over the world came to Amsterdam to showcase application advancements and middleware innovations enabled by globally connected high-performance networks. The iGrid2002 conference was a meeting place for people from the scientific and business community to meet and discuss the opportunities that lay ahead of us for both worlds. See www.igrid2002.org.

StarLight

StarLight(sm), the optical STAR TAP(sm) initiative, is an advanced optical infrastructure and proving ground for network services optimized for high-performance applications. Operational since summer 2001, StarLight is a 1GigE and 10GigE switch/router facility for high-performance access to participating networks and will ultimately become a true optical switching facility for wavelengths. StarLight is being developed by the Electronic Visualisation Laboratory (EVL) at the University of Illinois at Chicago (UIC), the International Center for Advanced Internet Research (iCAIR) at Northwestern University, and the Mathematics and Computer Science Division at Argonne National Laboratory, in partnership with Canada’s CANARIE and Holland’s SURFnet. STAR TAP and StarLight are made possible by major funding from the U.S. National Science Foundation to the University of Illinois at Chicago. STAR TAP and StarLight are service marks of the Board of Trustees of the University of Illinois. See www.startap.net/starlight.

SURFnet

SURFnet operates and innovates the national research network, to which 200 institutions in higher education and research in the Netherlands are connected. To remain in the lead SURFnet puts in a sustained effort to improve the infrastructure and to develop new applications to give users faster and better access to new Internet services. For more information, please visit www.surfnet.nl. For SARA, see www.sara.nl.

Megan Fellman | EurekAlert!
Further information:
http://www.igrid2002.org
http://www.startap.net/starlight
http://www.path1.com.

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>