Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global high-quality digital video is unveiled

09.10.2002


The International Center for Advanced Internet Research (iCAIR) at Northwestern University and Path1 Network Technologies, Inc. have demonstrated an innovative capability for global, high-quality, high-performance digital video at the recent international iGrid2002 Conference in Amsterdam.

The biennial iGrid (International Grid) event is dedicated to showcasing leading-edge applications enabled by globally high-performance networks. This experiment demonstrated high-performance, end-to-end, real-time broadcast-quality video transported uncompressed from the StarLight facility in Chicago to SARA Reken- en Netwerkdiensten, in Amsterdam, a Dutch national expertise centre in the field of High-Performance Computing and High-Performance Networking.

The iGrid2002 conference focused on e-science, Grid and Virtual Laboratory applications enabled by high-performance global networks. iGrid presents the latest developments in these areas. World-wide virtual laboratory applications based on global high-performance optical networks are crucial to a wide-range of emerging science disciplines as well as to many industries. As part of a prototype global virtual laboratory demonstration, this project showed the potential for applications having access to significant amounts of bandwidth, allowing transmitting multiple simultaneous streams of uncompressed digital video at 270 Mbps (600 Mbps with Forward Error Correction).



In this demonstration, a Path 1 Cx1000 IP Video Gateways received a 270 Mbps CCIR-601 serial digital video stream, encapsulated the stream into IP and added specialized stream handling for transmission over a long haul Gigabit Ethernet connection. The Cx1000 was used because it is specifically optimized for providing high quality digital video over IP networks. It is also designed to take advantage of high-performance networks, not just for contending with today’s narrowband networks. This experiment also demonstrated the power of next-generation optical network services based on lambda-switching to deliver multiple streams of extremely high-quality digital video. With these types of networks, the constraints of the current Internet disappear.

"This type of high-performance digital video is a critical component to many composite applications like those being shown at iGRID2002, as well as to many standard applications," said Jim Chen, associate director of iCAIR and project manager for the demonstration.

"Path 1 Network Technologies is focused on developing hardware and software that will allow video, previously too bandwidth demanding for satellite or video terrestrial circuits, to be transmitted globally," said David Carnevale, vice president of marketing and sales for Path 1. "With 2.5 and 10 gigabit capabilities, uncompressed high-definition television and other high-resolution video services can be transmitted without the need for heavy compression of the signal."

The connections between Chicago and Amsterdam consisted of 2.5 Gbps (NetherLight) provisioned by SURFnet and 10 Gbps transatlantic links provisioned by SURFnet and StarLight. NetherLight is a state-of-the-art optical multi-gigabit/s connection between Amsterdam and Chicago, the two locations that compose the current center for next-generation, optical Internet research. This is the world’s first transatlantic link provisioned for research. This 2.5 Gbit/s lambda connection constitutes the basis for experiments with new technologies for a fully optical Internet.

The International Center for Advanced Internet Research, Northwestern University

Northwestern University’s International Center for Advanced Internet Research (iCAIR, www.icair.org) accelerates leading-edge innovation and enhanced global communications through advanced Internet technologies, in partnership with the international community, and national partners, including EVL at the University of Illinois (www.evl.uic.edu), the Math and Computer Science Division of Argonne National Lab (www.mcs.anl.gov), CANARIE (www.canarie.ca), SURFnet (Netherlands, www.surfnet.nl), APAN (Asia Pacific, www.apan.net) and CERN (Europe, www.cern.ch.) For more information about Northwestern University, go to www.northwestern.edu.

Path1

Path 1 Network Technologies Inc. provides technology, equipment and services to merge broadcast-quality video transport with IP/Ethernet broadband networks. At the core of the company’s capabilities is expertise in IP Quality-of-Service and global synchronization, backed up by multiple patents, and knowledge of broadcast video. Path 1 offers the only coast-to-coast tried and proven broadcast video over IP video networking solution. The company is developing several video networking gateway products for customers ranging from backbone transporters to Video-on-Demand hybrid IP/cable providers. See www.path1.com.

IGRID2002

iGrid, the biennial International Grid event, concentrates on visualizing what Grid can do. Virtual Laboratory technologies and bandwidths in excess of 10 gigabits per second, make it possible to demonstrate new applications and areas in network technology. Three-dimensional demonstrations will let you see and feel the power of applications using the latest global network capabilities. More than 28 scientific groups from all over the world came to Amsterdam to showcase application advancements and middleware innovations enabled by globally connected high-performance networks. The iGrid2002 conference was a meeting place for people from the scientific and business community to meet and discuss the opportunities that lay ahead of us for both worlds. See www.igrid2002.org.

StarLight

StarLight(sm), the optical STAR TAP(sm) initiative, is an advanced optical infrastructure and proving ground for network services optimized for high-performance applications. Operational since summer 2001, StarLight is a 1GigE and 10GigE switch/router facility for high-performance access to participating networks and will ultimately become a true optical switching facility for wavelengths. StarLight is being developed by the Electronic Visualisation Laboratory (EVL) at the University of Illinois at Chicago (UIC), the International Center for Advanced Internet Research (iCAIR) at Northwestern University, and the Mathematics and Computer Science Division at Argonne National Laboratory, in partnership with Canada’s CANARIE and Holland’s SURFnet. STAR TAP and StarLight are made possible by major funding from the U.S. National Science Foundation to the University of Illinois at Chicago. STAR TAP and StarLight are service marks of the Board of Trustees of the University of Illinois. See www.startap.net/starlight.

SURFnet

SURFnet operates and innovates the national research network, to which 200 institutions in higher education and research in the Netherlands are connected. To remain in the lead SURFnet puts in a sustained effort to improve the infrastructure and to develop new applications to give users faster and better access to new Internet services. For more information, please visit www.surfnet.nl. For SARA, see www.sara.nl.

Megan Fellman | EurekAlert!
Further information:
http://www.igrid2002.org
http://www.startap.net/starlight
http://www.path1.com.

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>