Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dancer to perform with distant computer-generated character

01.10.2002


Pairing a real dancer with an animated dance partner is nothing new – it’s a technique used in any number of movies or television shows. But collaborating artists and engineers at the University of Illinois at Urbana-Champaign are putting a new spin on the idea.


Lance Chong, a graphic artist at the UI’s Beckman Institute for Advanced Science and Technology, uses motion-capture technology to track the movements of Cho-Ying Tsai. The movements – from up to 500 locations on the body – are mapped onto an avatar, which is then animated by the movement of the performer’s markers. The avatar will share the stage with a live dancer at USC Oct. 29.

Photo by Bill Wiegand



Working with engineers in the Beckman Institute for Advanced Science and Technology at Illinois, visiting Beckman scholar Yu Hasegawa-Johnson is the visionary behind a real-time, high-tech pas de deux by dancers located thousands of miles apart. The performance, scheduled to take place Oct. 29 at the University of Southern California’s Bing Theater in conjunction with the fall meeting of the Internet2 advanced-networking consortium, will feature a live dancer at USC, who will share the dance floor with "a fully-articulated avatar." The avatar, a computer-generated character that will assume various appearances during the dance – a baby butterfly, fairy and robot among them – will represent the movements of a dancer performing live in Beckman’s Integrated Systems Laboratory. The dancer’s movements will be transmitted in real time over the Internet. The animated images, created by Beckman’s Lance Chong, will be projected onto a semi-transparent screen placed between the dancer and the audience in the theater at USC. The dancers will see each other’s images and be able to dance in synch.

"As far as we know, this is the first time something like this has been attempted," said Hasegawa-Johnson, the production’s co-producer and art director, and a filmmaker with a passion for tapping into online technologies to create art forms. For the upcoming production, Hasegawa-Johnson recruited dancers Chih-Chuh Huang and Cho-Ying Tsai and enlisted the technical support of Hank Kaczmarski, director of Beckman Institute’s Integrated Systems Laboratory. Kaczmarski is co-producer and technical director for the production, which uses motion-capture technology.


"The motion-capture technology that will be used," he said, "is called ‘multiple-camera optical tracking.’ An array of 10 cameras surrounds the performer, who wears retro-reflective markers to tell the cameras the exact position of up to 500 locations on the performer’s body. Those body locations are mapped onto an avatar, which is then animated by the movement of the performer’s markers."

Kaczmarski said the dance project demonstrates how technology originally intended for scientific purposes can be adapted and used to explore human creativity. "We are taking a valuable tool used in our lab by kinesiologists to study human motion and adapting that tool to serve the arts," he said. "The ISL provides the environment for non-computer-savvy researchers to conduct research using ultra-state-of-the-art computer-based tools. My role in this project is to ‘tame’ the technology so that it is a servant to the performers, not the other way around."

The Beckman crew’s production is one of several collaborative works on the Oct. 29 program created by individuals at Internet2 member institutions nationwide to showcase various ways in which networking technologies can be harnessed and used for artistic exploration.

Melissa Mitchell | UIUC News Bureau

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>