Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dancer to perform with distant computer-generated character

01.10.2002


Pairing a real dancer with an animated dance partner is nothing new – it’s a technique used in any number of movies or television shows. But collaborating artists and engineers at the University of Illinois at Urbana-Champaign are putting a new spin on the idea.


Lance Chong, a graphic artist at the UI’s Beckman Institute for Advanced Science and Technology, uses motion-capture technology to track the movements of Cho-Ying Tsai. The movements – from up to 500 locations on the body – are mapped onto an avatar, which is then animated by the movement of the performer’s markers. The avatar will share the stage with a live dancer at USC Oct. 29.

Photo by Bill Wiegand



Working with engineers in the Beckman Institute for Advanced Science and Technology at Illinois, visiting Beckman scholar Yu Hasegawa-Johnson is the visionary behind a real-time, high-tech pas de deux by dancers located thousands of miles apart. The performance, scheduled to take place Oct. 29 at the University of Southern California’s Bing Theater in conjunction with the fall meeting of the Internet2 advanced-networking consortium, will feature a live dancer at USC, who will share the dance floor with "a fully-articulated avatar." The avatar, a computer-generated character that will assume various appearances during the dance – a baby butterfly, fairy and robot among them – will represent the movements of a dancer performing live in Beckman’s Integrated Systems Laboratory. The dancer’s movements will be transmitted in real time over the Internet. The animated images, created by Beckman’s Lance Chong, will be projected onto a semi-transparent screen placed between the dancer and the audience in the theater at USC. The dancers will see each other’s images and be able to dance in synch.

"As far as we know, this is the first time something like this has been attempted," said Hasegawa-Johnson, the production’s co-producer and art director, and a filmmaker with a passion for tapping into online technologies to create art forms. For the upcoming production, Hasegawa-Johnson recruited dancers Chih-Chuh Huang and Cho-Ying Tsai and enlisted the technical support of Hank Kaczmarski, director of Beckman Institute’s Integrated Systems Laboratory. Kaczmarski is co-producer and technical director for the production, which uses motion-capture technology.


"The motion-capture technology that will be used," he said, "is called ‘multiple-camera optical tracking.’ An array of 10 cameras surrounds the performer, who wears retro-reflective markers to tell the cameras the exact position of up to 500 locations on the performer’s body. Those body locations are mapped onto an avatar, which is then animated by the movement of the performer’s markers."

Kaczmarski said the dance project demonstrates how technology originally intended for scientific purposes can be adapted and used to explore human creativity. "We are taking a valuable tool used in our lab by kinesiologists to study human motion and adapting that tool to serve the arts," he said. "The ISL provides the environment for non-computer-savvy researchers to conduct research using ultra-state-of-the-art computer-based tools. My role in this project is to ‘tame’ the technology so that it is a servant to the performers, not the other way around."

The Beckman crew’s production is one of several collaborative works on the Oct. 29 program created by individuals at Internet2 member institutions nationwide to showcase various ways in which networking technologies can be harnessed and used for artistic exploration.

Melissa Mitchell | UIUC News Bureau

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>