Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three generations of optic Internet

24.09.2002


Professor Mikel Izal from the Public University of Navarre, Basque Country, has analysed the problems to integrate new optic networks in actual network and transfer level (TCP/IP) Internet protocols. This integration will enable to create the core of the second Internet generation in future, the so called Internet 2.



In that area, technological innovations are created everyday and the thesis has been focused on the burst switching networks corresponding to the second optic Internet generation.

Nowadays new optic technologies are based on wavelength division multiplexing. That way, several channels are transferred in a single optic fibre by using different wavelength carriers. Those optic technologies are divided into three generations. The first generation is based on wavelength division multiplexing (WDM). Here it is possible to create high capacity link networks between actual IP routers. The second one offers the possibility to make some operations of direct switching via optic technology. That way, the core of the network may offer optic channels, named Ligthpaths, or it can switch data in large packages, named burst switching networks.


Finally, the third generation would make all steps of channelling and processing of data-packages in the optic level, obtaining a complete optic switching of packages. At the present, the first generation is being implanted, as there are just experimental prototypes or architecture proposals for the second and third generations.

Problems with protocols

One of the theoretical advantage of optic Internet networks would be a faster data-transfer. However, if data is transferred in small packages, even if new networks have more transfer capacity and bandwidth, the network will be slow. In fact, the current problems of transfer time are based on protocols that were designed to have a secure network. Therefore, in order to make better use of speed capacity, data packages must be handled in larger packages.

In order to achieve that result, fractal traffic patterns or autosimilar patterns have been used. In new network architectures, the services of Internet protocols have been analysed, analytic expressions have been obtained and finally, simulations of such networks have been made to estimate the results.

Similarly, to offer the services Internet nowadays has the most effective protocols to be used in the second and third generations have been studied. In those studies the same result has been obtained: actual protocols would reduce significantly the speed in second and third generation networks. Therefore, it would be better to use protocols that have less interaction, but send larger data packages.

Finally, professor Izal has studied Internet traffic in a burst switching system. According to that research, it can be said that Internet and telephone traffic are not the same. The latter is stable in a certain scale, but Internet traffic is more difficult to predict. Therefore, the characteristics of burst traffic have been analysed and, as a consequence, the size and number of bursts have been grouped in a pattern. Indeed, that pattern could be useful for the design of optic switching of core of the network.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>