Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer system solves problems by tricking computers

17.09.2002


If people were computers, Srinidhi Varadarajan of Virginia Tech’s Department of Computer Science could enable them to go back to their youth to correct mistakes they made, adapt a jet engine to run a car, or change a part from one SUV engine to another as both vehicles sped down a highway side by side.

Of course, people aren’t computers and don’t need to do those things, but computers need to do equivalent processes. Varadarajan has come up with a computer technology he calls "Weaves" that allows the programmer to use a code in any programming language and convert it to a form similar to object-oriented programming. Weaves teachnology is used to create a virtual world that tricks the software into thinking it is in the real world.

The global computer network--the Internet--has doubled every year for nearly 20 years. The problem is how to test new pieces of network software on such a grand scale. The traditional method is through computer simulation, such as the model of a jet cockpit in which beginning pilots start to learn how to fly a plane. But simulation requires rewriting the software in a different form to test it, as the original cannot be tested. That creates two different versions, and there is no formal mechanism to ensure the equivalence of the test with the real thing, Varadarajan said.



Another method is emulation, or the direct testing of the original software. That way, the programmer can write a piece of software once and not have to rewrite it for simulation testing. The main problem with emulation is a lower degree of control than simulation.

"Why not create a virtual world to make software think it is in the real world?" , Varadarajan asked.,

Weaves can support both simulation and emulation testing, which was Varadarajan’s first goal. "You can’t test a piece of network software on 200-million computers," he said. Or even 5,000 computers. "But we can create hundreds of thousands of virtual machines that make software think it’s running on a very large-scale network. This leads to the creation of a virtual Internet."

Weaves can do all the things existing systems can do and more without asking software programmers to write code specifically for Weaves. "They just write it as they usually do and we take it," Varadarajan said. Then, through reverse analysis, Weaves can make any language look the same.

Also, Weaves allows for mistakes. "In each step in life, we take steps based on what we know," Varadarajan said. "If we realize we made a mistake and want to go back and undo it, we have to remember all the steps we took that caused the mistake." On the computer, the program must also remember all the steps made leading up to a mistake. "Trying to save all the information is very hard," Varadarajan said. "We are trying to make Netscape work without knowing the steps that lead up to the mistake. Weaves automatically does this. It records and saves data and shows what we need to go back in time to change." Thus the system allows for the weaving together of the languages and codes and for fast automatic checkpointing and recovery with no application support.

With a National Science Foundation CAREER award of $400,000 over five years for his proposal, "Weaving a Code Tapestry: A Compiler Directed Framework for Scalable Network Emulation," Varadarajan will continue his research, using "a novel vertical integration of the compiler-generated object framework, operating system and compiler support for fast and memory-efficient checkpointing, and a new adaptive time window based on parallel discrete event simulation algorithm, all of which work in conjunction."

"This synergy creates a new object-based framework for the development of large-scale simulations using code composition, without restricting the application programmer to any language or programming paradigm," Varadarajan said. This would be analogous to enabling a person to adapt a jet engine to work in a car or exchange parts in two fast-moving vehicles without stopping them.

As the educational component of the CAREER award, Varadarajan will develop learning modules to augment the simulation-based projects used in networking courses across the country to save students from spending an inordinate amount of time learning the intricacies of working in a simulation environment.


PR CONTACT: Sally Harris 540-231-6759 slharris@vt.edu
Researcher: Srinidhi Varadarajan, 540-231-5275, srinidhi@vt.edu

Srinidhi Varadarajan | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>