Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer system solves problems by tricking computers

17.09.2002


If people were computers, Srinidhi Varadarajan of Virginia Tech’s Department of Computer Science could enable them to go back to their youth to correct mistakes they made, adapt a jet engine to run a car, or change a part from one SUV engine to another as both vehicles sped down a highway side by side.

Of course, people aren’t computers and don’t need to do those things, but computers need to do equivalent processes. Varadarajan has come up with a computer technology he calls "Weaves" that allows the programmer to use a code in any programming language and convert it to a form similar to object-oriented programming. Weaves teachnology is used to create a virtual world that tricks the software into thinking it is in the real world.

The global computer network--the Internet--has doubled every year for nearly 20 years. The problem is how to test new pieces of network software on such a grand scale. The traditional method is through computer simulation, such as the model of a jet cockpit in which beginning pilots start to learn how to fly a plane. But simulation requires rewriting the software in a different form to test it, as the original cannot be tested. That creates two different versions, and there is no formal mechanism to ensure the equivalence of the test with the real thing, Varadarajan said.



Another method is emulation, or the direct testing of the original software. That way, the programmer can write a piece of software once and not have to rewrite it for simulation testing. The main problem with emulation is a lower degree of control than simulation.

"Why not create a virtual world to make software think it is in the real world?" , Varadarajan asked.,

Weaves can support both simulation and emulation testing, which was Varadarajan’s first goal. "You can’t test a piece of network software on 200-million computers," he said. Or even 5,000 computers. "But we can create hundreds of thousands of virtual machines that make software think it’s running on a very large-scale network. This leads to the creation of a virtual Internet."

Weaves can do all the things existing systems can do and more without asking software programmers to write code specifically for Weaves. "They just write it as they usually do and we take it," Varadarajan said. Then, through reverse analysis, Weaves can make any language look the same.

Also, Weaves allows for mistakes. "In each step in life, we take steps based on what we know," Varadarajan said. "If we realize we made a mistake and want to go back and undo it, we have to remember all the steps we took that caused the mistake." On the computer, the program must also remember all the steps made leading up to a mistake. "Trying to save all the information is very hard," Varadarajan said. "We are trying to make Netscape work without knowing the steps that lead up to the mistake. Weaves automatically does this. It records and saves data and shows what we need to go back in time to change." Thus the system allows for the weaving together of the languages and codes and for fast automatic checkpointing and recovery with no application support.

With a National Science Foundation CAREER award of $400,000 over five years for his proposal, "Weaving a Code Tapestry: A Compiler Directed Framework for Scalable Network Emulation," Varadarajan will continue his research, using "a novel vertical integration of the compiler-generated object framework, operating system and compiler support for fast and memory-efficient checkpointing, and a new adaptive time window based on parallel discrete event simulation algorithm, all of which work in conjunction."

"This synergy creates a new object-based framework for the development of large-scale simulations using code composition, without restricting the application programmer to any language or programming paradigm," Varadarajan said. This would be analogous to enabling a person to adapt a jet engine to work in a car or exchange parts in two fast-moving vehicles without stopping them.

As the educational component of the CAREER award, Varadarajan will develop learning modules to augment the simulation-based projects used in networking courses across the country to save students from spending an inordinate amount of time learning the intricacies of working in a simulation environment.


PR CONTACT: Sally Harris 540-231-6759 slharris@vt.edu
Researcher: Srinidhi Varadarajan, 540-231-5275, srinidhi@vt.edu

Srinidhi Varadarajan | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>