Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigate via the web with the SisNet receiver

09.09.2002


Knowing your precise position anytime via the internet is now possible thanks to the Signal in Space through Internet (SisNet) technology developed by the European Space Agency.



This technology combines the powerful capabilities of satellite navigation and the internet. As a result, the highly accurate navigation information that comes from the European Geostationary Navigation Overlay Service (EGNOS) Signal-in-Space (SIS) is now available in real time over the internet.

EGNOS is Europe’s first step in satellite navigation, paving the way for Galileo. At present it is in its final development phase and will become operational in spring 2004. An experimental EGNOS signal has been available since February 2000 through the EGNOS test bed (ESTB). EGNOS is what is called an augmentation signal: it corrects and improves the signals sent by the American GPS constellation, using geostationary satellites and it offers a precision in the order of 1 to 2 m as opposed to the 15 to 20 m presently available with GPS signals. In addition, EGNOS provides an Integrity signal through which the user can assess in quasi real time how much he can trust the GPS estimated position. The challenge is how to make the best use of this corrected data.


To access it a SISNET receiver has been developed through a contract between ESA and the Finnish Geodesic Institute (FGI). This device uses three technologies: a pocket ipack type PC, a mobile phone card (GSM or GPRS) and a GPS card receiver. Combining these three technologies: satellite navigation, digital software and internet access, offers a prototype of what looks set to become the tool of the future - a clever computer-phone that knows exactly where it is.

Dr Ruizhi Chen, head of the navigation department at FGI, says that the receiver he created "will evolve in the future, but already the possibilities are tremendous, capitalising on internet capabilities".

Tests have been under way to validate the concept. The SisNet receiver was installed in a car which, while being driven on the roads around Helsinki, gave its position with an accuracy of less than two metres.

For Dr Javier Ventura-Traveset, EGNOS Principal System Engineer and responsible for SisNet development at ESA, "this is the first time we demonstrate both the accuracy of EGNOS and the possibility to obtain, in real time, EGNOS navigation data by using the internet."

This receiver is of special interest as it can be used not only in cars but also in many other situations as it is a hand-held device. Access to satellite data via the internet also allows the user to keep on navigating even when out of range of a geostationary satellite, something which can be useful when travelling in towns where buildings interfere with signal reception. Indeed SisNet extends the service area of EGNOS to regions that can only be reached by EGNOS with difficulty as, in combination with mobile links, it can be used in urban areas.

For the time being, the receiver is made out of existing elements designed for other purposes, but commercially viable receivers are now being developed in cooperation with several European industries. Once the Galileo European satellite navigation system is deployed in 2008, this receiver will offer accurate satellite navigation services, with all the advantages of internet access. As Javier Ventura-Traveset says, "the use of SisNet is only limited by our imagination!".

Dominique Detain | alfa
Further information:
http://www.esa.int

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>