Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical Solution Revives Hands Free Mobile Telephones

03.09.2002


Hands free sets for mobile phones may be on the verge of a big comeback thanks to new research by the University of Warwick. Many people used hands free sets in an attempt to avoid what they perceived as a microwave radiation risk from holding a mobile phone close to one`s head.

However when it was pointed out that the standard wire based hands free kit actually itself acted as an aerial amplifying any signal to the users head the kit fell out of favour with this type of user.

Now researchers led by Professor Roger Green at the University of Warwick have found and patented a way of producing optical signal based hands free devices for mobile phones that do indeed shield users who fear the microwave radiation from mobile phones.

The researchers have developed a simple means of converting electrical signals from the mobile phone into an optical signal that is guided up through a plastic tube to an ear-piece where the signal is converted back into an audible form. This plastic tube cannot act as a radio antenna so no radio energy is channelled to the users head.

The technology also uses a crystal based ear-piece speaker instead of an electromagnetic coil to further minimise the action of stray electric fields.

Roger Green, Professor of Electronic Communication Systems,
School of Engineering, University of Warwick,
Coventry CV4 7AL.Tel : +44 (0)24 76 523133
Mobile +44 (0)7855 901515
Roger.Green@warwick.ac.uk

Peter Dunn | AlphaGalileo

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>