Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better than barcodes

13.08.2002


That bar code on your cereal box holds information read by a laser scanner. It’s not much information, but it’s enough to let the supermarket take your money, keep track of inventory, follow trends in customer preference, and restock its shelves. Scanners and bar codes speed up checkout, but they’ve got a few limitations. The scanning laser needs a direct line of sight to the bar code, and the bar code itself needs to be reasonably clean and undamaged – one reason your cashier might have to swipe that bag of spuds four or five times before the scanner reads it.



Now there’s something better, and it comes out of an Office of Naval Research program that goes back four decades. Very small electric crystal chips can now be embedded into products to provide up to 96 bits of information when they’re read by an electromagnetic scanner. (That’s roughly 6 times as much as bar codes hold. It also meets the new industry standard developed by the MIT-led Auto-ID Center.) These new radio-frequency scanners, unlike the optical ones in most supermarkets today, can read the chip whether they have direct line-of-sight to it or not. And dirt? Ordinary dirt matters not at all.

The chips themselves are so small (less than an inch long with the antenna attached, and only about as thick as a pencil lead) and so simple that they don’t need a power source--it all comes from the scanner. The new chips store enough information to uniquely tag just about every individual manufactured item. In effect, the scanner reads not only the category and model number, but a serial number for the particular item that bears the tag. The tags can be used for all kinds of marking, supply, tracking, inventory management, and logistical tasks. Imagine checking out by just pushing your cart through the supermarket’s door--that’s one of the new possibilities some major retailers are looking at.


From 1962 to 1976, the Office of Naval Research (ONR) sponsored development of "surface acoustic wave (SAW) technology" for filters in electromagnetic systems, electronic warfare surveillance devices, color TV receivers, and other devices of use to the Navy and Marine Corps. The original work was performed at Texas Instruments by Clinton Hartman and Lew Clairborne, who have since spun the technology off into their Texas-based company, RF SAW, Inc.

Just another example of better living through (Navy-sponsored) science.


For more information on the technology, or to interview those scientists involved in SAW research, please contact John Petrik or Gail Cleere at 703-696-5031, or email petrikj@onr.navy.mil or cleereg@onr.navy.mil


Gail Cleere | EurekAlert!
Further information:
http://www.onr.navy.mil/

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>