Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better than barcodes

13.08.2002


That bar code on your cereal box holds information read by a laser scanner. It’s not much information, but it’s enough to let the supermarket take your money, keep track of inventory, follow trends in customer preference, and restock its shelves. Scanners and bar codes speed up checkout, but they’ve got a few limitations. The scanning laser needs a direct line of sight to the bar code, and the bar code itself needs to be reasonably clean and undamaged – one reason your cashier might have to swipe that bag of spuds four or five times before the scanner reads it.



Now there’s something better, and it comes out of an Office of Naval Research program that goes back four decades. Very small electric crystal chips can now be embedded into products to provide up to 96 bits of information when they’re read by an electromagnetic scanner. (That’s roughly 6 times as much as bar codes hold. It also meets the new industry standard developed by the MIT-led Auto-ID Center.) These new radio-frequency scanners, unlike the optical ones in most supermarkets today, can read the chip whether they have direct line-of-sight to it or not. And dirt? Ordinary dirt matters not at all.

The chips themselves are so small (less than an inch long with the antenna attached, and only about as thick as a pencil lead) and so simple that they don’t need a power source--it all comes from the scanner. The new chips store enough information to uniquely tag just about every individual manufactured item. In effect, the scanner reads not only the category and model number, but a serial number for the particular item that bears the tag. The tags can be used for all kinds of marking, supply, tracking, inventory management, and logistical tasks. Imagine checking out by just pushing your cart through the supermarket’s door--that’s one of the new possibilities some major retailers are looking at.


From 1962 to 1976, the Office of Naval Research (ONR) sponsored development of "surface acoustic wave (SAW) technology" for filters in electromagnetic systems, electronic warfare surveillance devices, color TV receivers, and other devices of use to the Navy and Marine Corps. The original work was performed at Texas Instruments by Clinton Hartman and Lew Clairborne, who have since spun the technology off into their Texas-based company, RF SAW, Inc.

Just another example of better living through (Navy-sponsored) science.


For more information on the technology, or to interview those scientists involved in SAW research, please contact John Petrik or Gail Cleere at 703-696-5031, or email petrikj@onr.navy.mil or cleereg@onr.navy.mil


Gail Cleere | EurekAlert!
Further information:
http://www.onr.navy.mil/

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>