Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relays pass baton to next-gen broadband networks

30.07.2008
The ideal of affordable wireless broadband for all, and as an added bonus better quality services in urban areas, is a lot closer thanks to recent advances made by European researchers.

The next generation of broadband wireless networks is set to be simpler, cheaper for both operators and consumers, and more efficient than current technology permits. This is due to the innovative use of relay stations to boost the signals from base stations.

The FIREWORKS project will deliver fourth-generation (4G) broadband wireless access (BWA) systems to remote communities despite difficult terrain and low population densities.

In cities, where large buildings and thick walls can block or interfere with wireless signals, relays are a cost-effective and easy to deploy way of boosting reception to the end-user.

You the MAN!

The EU-funded project concentrated on OFDMA (Orthogonal Frequency Division Multiplexing Access) based networks and specifically those designed for BWA, particularly wimax and wifi. OFDMA networks have different characteristics and deliver signals in a different way to traditional fixed-line and cellular networks. OFDMA is already in widespread use and the technology will continue to be used for next-generation networks.

WiFi local area networks (LANs) are familiar to most people, with ‘hotspots’ where anybody can connect to the internet via laptop to be found in airports, cafes, hotels and other public areas all over Europe and internationally. The next evolution of WiFi is Mesh WiFi, where the individual hotspots are seamlessly linked together to form larger networks. WiMAX is designed to provide much wider coverage, which in a city would be a metropolitan area network (MAN).

“Relay stations are much smaller than base stations and are much easier to deploy – they can be fixed onto lamp posts for example,” says FIREWORKS technical manager Dr Antonis Valkanas. “They also should only cost around one-fifth of the price, as the intelligence is in the base station and, unlike base stations, they do not require a directed backhaul connection to the internet.”

FIREWORKS’ systems will also be able to provide, for the first time, seamless operation between WiMAX and WiFi networks, so somebody on the move with a mobile device or laptop will not notice the switch from one to the other.

Exploiting the overlap

One of the main challenges facing the researchers was the problem of how to maximise the gain from overlapping transmissions. The information can be accessed from either the relay or the base station at any one time, or by simultaneous transmissions by both of them.

The project was able to deliver new algorithms – small software packages – which ensure that, whatever transmission protocol is used, the best combination and clearest reception is assured.

With this problem solved, it is possible to extend the range of networks into previously inaccessible areas, whether due to high cost or rough terrain. It also is now possible to boost reception in urban blackspots by positioning relays where base stations are not feasible.

While the main benefits of FIREWORKS are not likely to be felt until the next generation of BWA networks start rolling out in Europe, from 2010, a prototype system has been developed to prove the viability of the relaying concept.

ROCKET, son of FIREWORKS

In fact, so successful was FIREWORKS that the EU has agreed to fund a follow-up project with the same core consortium.

Project ROCKET kicked off in January 2008, and will be both taking the techniques used in its predecessor forward and looking into other areas only previously touched on, such as the most efficient use and allocation of spectrum for BWA services.

The systems developed in ROCKET will conform with the latest BWA standards, including 802.16m, which are now going through the IEEE (the international engineering standards body) approval process, and so will have a shelf-life of many years.

From hop to hop-hop

The main focus of the project, though, will be to expand the scope of relay coverage from the single hop of FIREWORKS – one base station to one relay station – to a multi-hop configuration with one or more base stations sending signals onto to relay stations which can then retransmit to other relay stations. This will require a lot more work on the base-band and protocol layer to ensure what could be several different signals being combined into the best possible signal for the end-user.

While the work being done is highly technical, the end result will simply mean high-quality, low-cost wireless broadband access virtually anywhere in Europe, and eventually the whole world.

FIREWORKS was funded by the EU’s Sixth Framework Programme (FP6) for research. ROCKET is being funded by FP7.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>