Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Putting a virtual doctor in the ambulance

A new ambulance communications system will enable doctors to diagnose and begin treating critically ill patients before they reach hospital.

Diagnosing and treating a critically ill or injured patient as early as possible can mean the difference between life and death. A new communications system between a moving ambulance and its hospital base allows the simultaneous transmission of bandwidth-hungry video and ultra-sonic images, telephone communications and patient data, all at the same time.

Medical teams can therefore gather vital and detailed information about the patient’s condition and advise the ambulance team on patient treatment as they rush towards the hospital.

The ambulances transmit and receive high-quality data over wimax, a microwave access technology that can deliver data at up to 75 megabits per second over a range of 70km between fixed points (802.16.d), or its mobile version can provide 15mb/s over a four-kilometre radius (802.16.e).

“If you are transmitting data in high quality, it is very important that you don’t lose any bit of information,” says Enrico Angori, a leading researcher on the WEIRD project. WiMAX is the cheapest channel to use and the channel that can deliver the best quality of service.”

WiMAX is not new, but the research team on the EU-funded WEIRD project extended the resilience and flexibility of the WiMAX technology and created a user-friendly package that can easily be used in ambulances by non-computer specialists.

Practical and usable solutions

“The main part of our work is to make it easy for end-users to make use of the benefits of new technologies like WiMAX,” explains Giuseppe Martufi, another member of the WEIRD research team.

The team achieve this by developing software that hides the complexity of the configuration of the end-to-end communication channel, whatever the different equipment or different versions of WiMAX used. It means that the paramedic onboard the ambulance can quickly and easily establish an end-to-end communication path without specialist training, allowing them to concentrate on what they do best – saving lives.

Bandwidth can be reserved for the ambulance’s critical communications using a protocol called DIAMETER that identifies data traffic and prioritises it, ensuring communications are not blocked by low-priority data traffic, such as emails.

Seamless end-to-end connections

One of the most important features of the ambulance communications system is its ability to create end-to-end links between two points by seamlessly integrating the WiMAX signal with the other wireless communication technologies encountered, such as mobile telephony.

The WEIRD researchers developed software that takes advantage of the features of ‘next-generation networks’. NGNs layer information, decoupling the applications from the underlying transport stratum. Whatever the underlying network, the ambulance’s signals will be passed seamlessly, end to end.

A few years ago, developers had envisaged global WiMAX networks replacing our present communications infrastructures. Increasingly, WiMAX is being viewed as a complementary technology to existing wireless communication access channels.

So, the successful seamless integration of WiMAX with ‘media-independent handover’ is an important step forward.

Not all applications are designed to run on NGNs. For these, the research team built a series of adaptors – known as WEIRD agents or WEIRD application programming interfaces. WEIRD agents allow non-NGN applications to take advantage of the enhanced quality of service and seamless mobility features offered by the ambulance communications system.

WEIRD received funding from the EU's Sixth Framework Programme for research.

This is one of a series of three articles on the WEIRD project. See also 'Spotting tomorrow's forest fires' and 'Monitoring agains another Pompeii'.

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>