Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a virtual doctor in the ambulance

30.07.2008
A new ambulance communications system will enable doctors to diagnose and begin treating critically ill patients before they reach hospital.

Diagnosing and treating a critically ill or injured patient as early as possible can mean the difference between life and death. A new communications system between a moving ambulance and its hospital base allows the simultaneous transmission of bandwidth-hungry video and ultra-sonic images, telephone communications and patient data, all at the same time.

Medical teams can therefore gather vital and detailed information about the patient’s condition and advise the ambulance team on patient treatment as they rush towards the hospital.

The ambulances transmit and receive high-quality data over wimax, a microwave access technology that can deliver data at up to 75 megabits per second over a range of 70km between fixed points (802.16.d), or its mobile version can provide 15mb/s over a four-kilometre radius (802.16.e).

“If you are transmitting data in high quality, it is very important that you don’t lose any bit of information,” says Enrico Angori, a leading researcher on the WEIRD project. WiMAX is the cheapest channel to use and the channel that can deliver the best quality of service.”

WiMAX is not new, but the research team on the EU-funded WEIRD project extended the resilience and flexibility of the WiMAX technology and created a user-friendly package that can easily be used in ambulances by non-computer specialists.

Practical and usable solutions

“The main part of our work is to make it easy for end-users to make use of the benefits of new technologies like WiMAX,” explains Giuseppe Martufi, another member of the WEIRD research team.

The team achieve this by developing software that hides the complexity of the configuration of the end-to-end communication channel, whatever the different equipment or different versions of WiMAX used. It means that the paramedic onboard the ambulance can quickly and easily establish an end-to-end communication path without specialist training, allowing them to concentrate on what they do best – saving lives.

Bandwidth can be reserved for the ambulance’s critical communications using a protocol called DIAMETER that identifies data traffic and prioritises it, ensuring communications are not blocked by low-priority data traffic, such as emails.

Seamless end-to-end connections

One of the most important features of the ambulance communications system is its ability to create end-to-end links between two points by seamlessly integrating the WiMAX signal with the other wireless communication technologies encountered, such as mobile telephony.

The WEIRD researchers developed software that takes advantage of the features of ‘next-generation networks’. NGNs layer information, decoupling the applications from the underlying transport stratum. Whatever the underlying network, the ambulance’s signals will be passed seamlessly, end to end.

A few years ago, developers had envisaged global WiMAX networks replacing our present communications infrastructures. Increasingly, WiMAX is being viewed as a complementary technology to existing wireless communication access channels.

So, the successful seamless integration of WiMAX with ‘media-independent handover’ is an important step forward.

Not all applications are designed to run on NGNs. For these, the research team built a series of adaptors – known as WEIRD agents or WEIRD application programming interfaces. WEIRD agents allow non-NGN applications to take advantage of the enhanced quality of service and seamless mobility features offered by the ambulance communications system.

WEIRD received funding from the EU's Sixth Framework Programme for research.

This is one of a series of three articles on the WEIRD project. See also 'Spotting tomorrow's forest fires' and 'Monitoring agains another Pompeii'.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>