Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving lives with 10-kilo phone network

23.07.2008
A ten-kilo GSM mobile phone network developed by European researchers will allow rescue workers to set up communications just hours, or even minutes, after a man-made or natural catastrophe. It will mean more lives saved.

When disaster strikes communications are often one of the first infrastructures to go down. But it is exactly when effective communications are most desperately needed.

That problem may be a thing of the past thanks to achievements in the EU-funded WISECOM project. WISECOM stands for Wireless Infrastructure over Satellite for Emergency Communications, and the team behind the project has developed hardware and software allowing rescue workers to respond faster in the wake of a catastrophe.

“We developed lightweight, portable (or transportable) systems that allow rescue workers to set up voice and data networks in a very short time,” says Matteo Berioli, WISECOM’s coordinator.

The hardware can then link up to satellites to connect with the world mobile and landline networks, says Berioli. “The system works anywhere there is satellite coverage, which is to say almost everywhere in the world,” he adds.

Suitcase-sized cell

The system comes in two versions, which exploit two different satellite technologies: Inmarsat BGAN and DVB-RCS. BGAN, a satellite telephony standard, is smaller with lower performance, while DVB-RCS is a satellite broadcast standard and has much better performance, but is much larger.

The version working with BGAN is portable, the size of a small suitcase, and weighs just 10kg. It can be carried on a standard flight and delivered to the disaster zone, where non-technical rescue workers can set it up in minutes. The DVB-RCS version is larger and heavier, weighing 60kg – about the size of two fairly large suitcases.

“Most of the volume in the DVB-RCS version is taken up by a satellite dish,” reveals Berioli.

Both systems come with an integrated GSM network and wifi connection. The BGAN version integrates a GSM pico-cell – tiny mobile phone cell using the internet to connect to the public phone service – and offers coverage of over 300m radius for voice and data, while the DVB-RCS version integrates a GSM micro-cell which can cover several kilometres and it benefits from a larger bandwidth on the satellite connection.

The BGAN version is for immediate deployment during the initial emergency response, while the DVB-RCS one has longer deploying times, mainly because the 1.2m satellite antenna has to be carefully pointed. It is intended to help reconstruction efforts in the days and weeks after a disaster.

In addition to the hardware, WISECOM developed useful software to maximise the impact of the system. Location Based Services (LBS) allow emergency chiefs to track rescue workers as they seek out disaster victims.

“It is fundamental with triage, [helping to determine] which cases require the highest priority,” Berioli offers as an example. “We only discovered the importance of this service when we talked to end-users.”

Novel suggestions

Indeed, one novelty of the WISECOM project is that user suggestions are a vital part of its work plan. “Engineers can create perfect technology, but often in the past it did not always correspond to real needs. We included end-users as part of the consortium to make sure we were developing relevant systems.”

The LBS for triage is a case in point. Coding triage victims by colour – black, red, yellow or green – is an internationally recognised system. Black denotes a fatality; red someone who is near death, yellow is serious but not life-threatening, while green signals an injury.

“If a victim is red, the rescue worker notes that and the LBS software immediately, via WISECOM, tells the command centre where to find the victim. Then command can alert other rescue workers and establish voice communication [with] specific people to speed up the rescue, ” Berioli explains.

All this – voice and data, GSM and WiFi – runs over WISECOM and the satellite. So the command centre could even be on the other side of the world, thanks to the satellite link-up.

Extra functionality

LBS and this system of electronic triage is just one example of the extra functionality the team built into the system. Tetra is another example.

“Tetra is the new communication standard, that serves the needs of emergency response and public safety,” says Berioli. “There is currently a very big push for this standard in Europe,” he notes.

Tetra was not part of WISECOM’s original brief, but the team developed a solution within their system for this standard.

“We did not produce a full demonstrator, but we proved the functionality in the lab. It could be easily scaled up for real-world use. We did not have to do it, but it was very relevant to our system, so we were keen to do the work,” adds Berioli.

Once all these elements were complete, the WISECOM team tested the entire system in a live demonstration. “I was impressed by how many people were involved. There were over 150 people and 25 vehicles: fire trucks, ambulances,… everything. We gave the rescue workers some training, but they did everything on the day, setting up the WISECOM system and going through an emergency drill. It worked very well,” the coordinator confirms.

Commercial opportunities

Now the system is ready for commercialisation, and some of the partners are actively pursing opportunities – though, in part, that will depend on public services. “These types of systems are generally purchased by governments, or civil security forces,” notes Berioli.

WISECOM, which was funded by the Sixth Framework Programme for research, had another unexpected impact. “It has put satellites on the map for emergency communications. There are not many people working in this area, and it has suddenly become a hot topic, because people have understood the potential of satellites in emergency situations, when terrestrial infrastructures are not reliable or [no longer] available. For this reason, I assume, I was invited to chair the satellite workgroup on the EU’s Public Safety Communications Forum.”.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>