Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Your Eyes Only: Custom Interfaces Make Computer Clicking Faster, Easier

17.07.2008
Personalized computer interfaces that adapt to each user's vision and motor abilities significantly speeds up computer tasks, especially in disabled users. The prototype system offers the first instantly customizable computer interface.

Insert your key in the ignition of a luxury car and the seat and steering wheel will automatically adjust to preprogrammed body proportions. Stroll through the rooms of Bill Gates' mansion and each room will adjust its lighting, temperature and music to accommodate your personal preference. But open any computer program and you're largely subject to a design team's ideas about button sizes, fonts and layouts.

Off-the-shelf designs are especially frustrating for the disabled, the elderly and anybody who has trouble controlling a mouse. A new approach to design, developed at the University of Washington, would put each person through a brief skills test and then generate a mathematically-based version of the user interface optimized for his or her vision and motor abilities. A paper describing the system, which for the first time offers an instantly customizable approach to user interfaces, was presented today in Chicago at a meeting of the Association for the Advancement of Artificial Intelligence.

"Assistive technologies are built on the assumption that it's the people who have to adapt to the technology. We tried to reverse this assumption, and make the software adapt to people," said lead author Krzysztof Gajos, a UW doctoral student in computer science and engineering. Co-authors are Dan Weld, a UW professor of computer science and engineering, and Jacob Wobbrock, an assistant professor in the UW's Information School.

Tests showed the system closed the performance gap between disabled and able-bodied users by 62 percent, and disabled users strongly preferred the automatically generated interfaces.

"This shows that automatically generating personalized interfaces really does work, and the technology is ready for prime time," Weld said.

The system, called Supple, begins with a one-time assessment of a person's mouse pointing, dragging and clicking skills. A ring of dots appears on the screen and as each dot lights up, the user must quickly click on it. The task is repeated with different-sized dots. Other prompts ask the participant to click and drag, select from a list, and click repeatedly on one spot. Participants can move the cursor using any type of device. The test takes about 20 minutes for an able-bodied person or up to 90 minutes for a person with motor disabilities.

An optimization program then calculates how long it would take the person to complete various computer tasks, and in a couple of seconds it creates the interface that maximizes that person's accuracy and speed when using a particular program.

Researchers tested the system last summer on six able-bodied people and 11 people with motor impairments. The resulting interfaces showed one size definitely did not fit all.

A man with severe cerebral palsy used his chin to control a trackball and could move the pointer quickly but spastically. Based on his skills test, Supple generated a user interface where all the targets were bigger than normal, and lists were expanded to minimize scrolling.

By contrast, a woman with muscular dystrophy who participated in the study used both hands to move a mouse. She could make very precise movements but moved the cursor very slowly and with great effort because of weak muscles. Based on her results, Supple automatically generated an interface with small buttons and a compressed layout.

"There is a temptation to think that we can come up with a universal design. But if we look at the results, the design that helps one person will actually be hurtful to a person with a different set of abilities," Gajos said.

"From an accessibility standpoint, it's always better to change the environment, rather than use specialized assistive technologies," said Kurt Johnson, a UW professor of rehabilitation medicine who coordinated the tests.

“Supple could be useful for many people with limitations in function, ranging from the elderly, to people with low vision, to people with hand tremors.”

The program could also be used to create interfaces that can adapt to different sizes of screen, for example on handheld devices.

But deploying this system would require a radically different approach to designing computer interfaces, Gajos said. He predicts the first applications are likely to be for Web-based applications. The researchers also plan to look at adapting interfaces that were designed in the traditional way into ones that Supple can use.

For more information, contact Gajos at (206) 399-9486 or kgajos@cs.washington.edu, Weld at (206) 543-9196 or weld@cs.washington.edu or Wobbrock at (206) 616-2541 or wobbrock@u.washington.edu.

Gajos | Newswise Science News
Further information:
http://www.washington.edu
http://www.uwnews.org/

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>