Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye to faulty software?

17.07.2008
Will it ever be possible to buy software guaranteed to be free from bugs? A team of European researchers think so. Their work on the mathematical foundations of programming could one day revolutionise the software industry.

We have become used to the idea that software will not work properly. While we would take a faulty car back to the dealer and demand they put it right, we are remarkably tolerant of software that goes wrong.

The software we buy usually comes with no guarantee and disclaimers are notoriously all encompassing. We no longer expect everything to work correctly ‘out of the box’. More to the point, neither does the manufacturer. Indeed, software houses seem to rely on their customers to find faults, which they can then ‘patch’ in a so-called ‘upgrade’ of the product.

“The software industry is still very immature compared to other branches of engineering,” says Dr Bengt Nordström, a computer scientist at Chalmers University in Göteborg. “We want to see programming as an engineering discipline but it’s not there yet. It’s not based on good theory and we don’t have good design methods to make sure that at each step we produce something that’s correct.”

Nordström believes that the whole approach to software design needs to be rethought. The usual approach is to validate a program via a lengthy testing process. Instead, he would like to see a design philosophy that guarantees from first principles that a program will do what it says on the box.

The key lies in an esoteric reformulation of mathematics called ‘type theory’ based on the notion of computation. In this approach, the specification for a computational task is stated as a mathematical theorem. The program that performs the computation is equivalent to the proof of the theorem. By proving the theorem the program is guaranteed to be correct.

Open source

It is not that simple, of course, but so promising is type theory that since 1989 the EU has been funding a string of projects to develop it under the Future and Emerging Technologies programme.

Nordström was coordinator of one of the projects, TYPES, which fosters co-operation on the topic among researchers at 15 European universities and research institutes, along with those at 19 associated academic and industrial organisations.

The TYPES partners are also releasing open source software packages that anyone can download, use and modify. These packages include several ‘proof editors’ that, in type theory, are the key to guaranteeing the correctness of programs.

Can such an abstract research area really lead to reliable, bug-free software?

“European research in this field is the strongest in the world,” Nordström points out. “Many computer programs are going wrong, they don’t work properly, and in the long run this research will help. This is a very slow process, it takes many years to get ideas from the universities into industry but I think it’s slowly taking place.”

The open source principle, says Nordström, is fundamental to what they are trying to achieve.

“It’s important that anyone can evaluate the code and check if it is correct, so it’s inherent in this project that what we are doing should be open so that it can be discussed by everybody.”

Results from type theory are already finding their way into other projects. The EU-funded Mobius project is developing methods, known as ‘proof-carrying code’, for downloaded programs to be certified as bug-free.

Meanwhile, a France-based company is using ideas from type theory to design secure embedded computer systems such as those used for smart cards. Further research is also under way in Japan.

Theory, in practice

Researchers have also demonstrated the power of type theory by proving the classic ‘four colour’ theorem with one of the proof editors used in TYPES. Type theory is also finding application in the analysis of human language.

Nordström does not see type theory as being necessary for all programs, but there is a clear need for guarantees in critical systems in banking, for example. But type theory could also be important in the transport, defence and healthcare sectors, where mistakes can cost lives.

TYPES received funding from the EU’s Sixth Framework Programme for research as a ‘coordination action’, which describes projects that aim to oil the wheels of co-operation rather than directly develop a new technology. TYPES interweaves both basic and applied research.

“That’s one thing I find very, very interesting compared to other sciences,” Nordström notes. “We are maybe 150 people working in this project and it’s a mixture of very practical persons and very theoretical persons and there is a lot of exchange between them. I think that’s very rare compared to other sciences.”

He hopes that the work done under TYPES will ultimately allow programming to mature into a genuine engineering discipline with the same high standards and quality assurance now expected elsewhere in the engineering profession.

“A lot of effort is now spent on testing software,” he says. “Very often programs are written quite quickly and then they are tested and changed and tested again, and so on. It’s very unsystematic. This is not how we build bridges and highways.

That style of working is going to change so that we spend more effort on actually writing programs than testing them.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89864

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>