A vest to measure stress

Stressed out? Time to take a break? It will not be long before our clothing gives us the answer. In the EU’s CONTEXT project, companies and research institutes are developing a comfortable vest that will read muscle tension and deduce stress levels at any given time.

At the core of the vest is “wearable electronics”. This consists of sensors woven into the fabric that register the electrical excitation of the muscle fibers, and thin conducting metallic fibers that pass the signals to an electronic analysis system. People’s muscle tension changes with their stress level – the greater the stress, the more likely the muscles are to produce a synchronous twitching effect.

Though this is barely perceptible, the electrodes register the change. The idea of the sensor vest originated with biomedical scientists at the Catholic University of Leuven, Belgium, who needed an inconspicuous measuring tool for stress studies. Until then, they had affixed electrodes directly to their test subjects’ chests. But this itself induced stress, with the result that the tests delivered very little useful information.

The new vest is designed to ensure a more relaxed test environment. The project members are exploring further potential applications such as a special vest for computer games. By selectively tensing the torso muscles, players could use the vest to control figures on the monitor and for instance burst their heroes’ chains and fetters. The vest could also contribute to safety at the workplace – perhaps ensuring that workers do not lift loads that are too heavy for them. And sports coaches could tell from the electronic vest whether athletes have reached their performance limits or still possess energy reserves.

”The most important requirement for everyday use is a robust electronic system,” says Torsten Linz of the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin, the partner responsible for the “packaging”. The entire electronic system has to be resistant to water and perspiration. The electric conductors must not fray even after repeated laundry cycles, and the sensors must be no larger than buttons to ensure that the garment is comfortable.

The IZM researchers have meanwhile developed stable metallic fibers, watertight connections and durable sensor buttons. Their task over the next few months will be to integrate the analysis electronics. The project partners have already demonstrated during field hockey training that the vest really works; it enabled players to choose the ideal moment for striking the ball and to hit it much further than usual.

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors