Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed optical electronics come into view

03.07.2008
European researchers have taken a major step towards the goal of developing printable electronics that can be used for creating radio frequency identification tags and flexible watch displays.

Researchers have long dreamed of being able to print electronic components directly onto organic materials such as paper, fabrics, or plastic.

In addition to being able to fabricate large numbers of everyday devices such as watch displays and other applications cheaply, they envision novel applications including electronic paper, eyeglasses with embedded displays, or even smart clothing.

Researchers in the EU-funded CONTACT project have demonstrated that with suitable inks and printers, organic liquid crystal displays and other optical electronic devices can be printed out precisely.

The Technical University of Ilmenau, a CONTACT partner, has shown that within the printing process patterned glass plates can be used.

The project researchers hope to follow this proof-of-principle by developing a state-of-the-art gravure printing press, called Labratester 2. The press will be able to print hundreds of thousands of organic thin film transistor (TFT) arrays or other devices precisely and efficiently.

Labratester 2 is currently being finalised by Switzerland-based Schläefli Machines, another project partner. The company’s challenge is to perfect the extremely precise machinery needed to correctly align the layers of materials needed to form arrays of organic TFTs and other circuit elements.

Obstacles overcome
Project coordinator Alan Mosley says that the most challenging problem the project team encountered was when they tried to lay down the first layer of a liquid crystal display over the TFT array they had already printed.

“What we found was that when we put down the first layer associated with the liquid crystal manufacture, it destroyed the TFT layer,” he says. “You have to use aggressive solvents, which attack organic materials.”

Project researchers at the Imperial College London eventually found ways to modify the inks and other materials making up the TFT layer so as to resist the solvents. The result is a process for printing a TFT layer that is compatible with a liquid crystal display.

Mosley also credits consortium partner IMEC in Belgium for research leading to the special ink formulations used to print the electronic components.

The group’s next challenge is to replace their current printing platform, Labratester 1, with the more sophisticated Labratester 2. Although both presses are capable of printing the tiny structures needed for optical electronics – 25 micron features with 25 micron spacing – Labratester 2 will be able to align sequential layers with 10 micron precision.

“You want to put down one layer and then lay the next one on it in a precise position,” Mosley says. “But the Labratester 1 simply wasn’t equipped to do that.”

He explains that Labratester 2 will use optical cameras to detect alignment marks in order to register each layer precisely over the previous one.

Wide range of expertise
CONTACT, which was funded under the EU’s Sixth Framework Programme for research, drew together the expertise of leading academic and industrial partners from Belgium, Germany, Switzerland and the UK.

In addition to fabricating the printers, the researchers made advances in formulating, synthesising and testing new materials, glass technology and thin-films.

Although the 42-month long project has now ended, two of the project partners, Schläelfli and Asulab, have opted to complete and test the Labratester 2 printer. Switzerland-based Asulab, which is part of the Swatch Group, plans to use Labratester 2 to print LCD watch displays.

“There may be opportunities for some clever designs,” says Mosley. “A glass display has to be rectangular or square, but with plastic you can cut it to any shape you want.”

Mosley expects that Labratester 2 will stimulate the entire organic electronics sector.

“As far as I’m aware, it will be the most advanced bench top gravure printer available worldwide,” he says. “There’s been a lot of interest in it from laboratories and R&D groups. When you look around the world, there are a lot of people interested in organic electronics.”

The Labratester 2 will be capable of printing only moderate numbers of devices at a time, but the advances that have gone into it can be transferred to faster machines.

“What we feel is that the machine will evolve into something that could do millions of copies of a certain item per year,” says Mosley. “It has that potential.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89831

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>