Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed optical electronics come into view

03.07.2008
European researchers have taken a major step towards the goal of developing printable electronics that can be used for creating radio frequency identification tags and flexible watch displays.

Researchers have long dreamed of being able to print electronic components directly onto organic materials such as paper, fabrics, or plastic.

In addition to being able to fabricate large numbers of everyday devices such as watch displays and other applications cheaply, they envision novel applications including electronic paper, eyeglasses with embedded displays, or even smart clothing.

Researchers in the EU-funded CONTACT project have demonstrated that with suitable inks and printers, organic liquid crystal displays and other optical electronic devices can be printed out precisely.

The Technical University of Ilmenau, a CONTACT partner, has shown that within the printing process patterned glass plates can be used.

The project researchers hope to follow this proof-of-principle by developing a state-of-the-art gravure printing press, called Labratester 2. The press will be able to print hundreds of thousands of organic thin film transistor (TFT) arrays or other devices precisely and efficiently.

Labratester 2 is currently being finalised by Switzerland-based Schläefli Machines, another project partner. The company’s challenge is to perfect the extremely precise machinery needed to correctly align the layers of materials needed to form arrays of organic TFTs and other circuit elements.

Obstacles overcome
Project coordinator Alan Mosley says that the most challenging problem the project team encountered was when they tried to lay down the first layer of a liquid crystal display over the TFT array they had already printed.

“What we found was that when we put down the first layer associated with the liquid crystal manufacture, it destroyed the TFT layer,” he says. “You have to use aggressive solvents, which attack organic materials.”

Project researchers at the Imperial College London eventually found ways to modify the inks and other materials making up the TFT layer so as to resist the solvents. The result is a process for printing a TFT layer that is compatible with a liquid crystal display.

Mosley also credits consortium partner IMEC in Belgium for research leading to the special ink formulations used to print the electronic components.

The group’s next challenge is to replace their current printing platform, Labratester 1, with the more sophisticated Labratester 2. Although both presses are capable of printing the tiny structures needed for optical electronics – 25 micron features with 25 micron spacing – Labratester 2 will be able to align sequential layers with 10 micron precision.

“You want to put down one layer and then lay the next one on it in a precise position,” Mosley says. “But the Labratester 1 simply wasn’t equipped to do that.”

He explains that Labratester 2 will use optical cameras to detect alignment marks in order to register each layer precisely over the previous one.

Wide range of expertise
CONTACT, which was funded under the EU’s Sixth Framework Programme for research, drew together the expertise of leading academic and industrial partners from Belgium, Germany, Switzerland and the UK.

In addition to fabricating the printers, the researchers made advances in formulating, synthesising and testing new materials, glass technology and thin-films.

Although the 42-month long project has now ended, two of the project partners, Schläelfli and Asulab, have opted to complete and test the Labratester 2 printer. Switzerland-based Asulab, which is part of the Swatch Group, plans to use Labratester 2 to print LCD watch displays.

“There may be opportunities for some clever designs,” says Mosley. “A glass display has to be rectangular or square, but with plastic you can cut it to any shape you want.”

Mosley expects that Labratester 2 will stimulate the entire organic electronics sector.

“As far as I’m aware, it will be the most advanced bench top gravure printer available worldwide,” he says. “There’s been a lot of interest in it from laboratories and R&D groups. When you look around the world, there are a lot of people interested in organic electronics.”

The Labratester 2 will be capable of printing only moderate numbers of devices at a time, but the advances that have gone into it can be transferred to faster machines.

“What we feel is that the machine will evolve into something that could do millions of copies of a certain item per year,” says Mosley. “It has that potential.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89831

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>