Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed optical electronics come into view

03.07.2008
European researchers have taken a major step towards the goal of developing printable electronics that can be used for creating radio frequency identification tags and flexible watch displays.

Researchers have long dreamed of being able to print electronic components directly onto organic materials such as paper, fabrics, or plastic.

In addition to being able to fabricate large numbers of everyday devices such as watch displays and other applications cheaply, they envision novel applications including electronic paper, eyeglasses with embedded displays, or even smart clothing.

Researchers in the EU-funded CONTACT project have demonstrated that with suitable inks and printers, organic liquid crystal displays and other optical electronic devices can be printed out precisely.

The Technical University of Ilmenau, a CONTACT partner, has shown that within the printing process patterned glass plates can be used.

The project researchers hope to follow this proof-of-principle by developing a state-of-the-art gravure printing press, called Labratester 2. The press will be able to print hundreds of thousands of organic thin film transistor (TFT) arrays or other devices precisely and efficiently.

Labratester 2 is currently being finalised by Switzerland-based Schläefli Machines, another project partner. The company’s challenge is to perfect the extremely precise machinery needed to correctly align the layers of materials needed to form arrays of organic TFTs and other circuit elements.

Obstacles overcome
Project coordinator Alan Mosley says that the most challenging problem the project team encountered was when they tried to lay down the first layer of a liquid crystal display over the TFT array they had already printed.

“What we found was that when we put down the first layer associated with the liquid crystal manufacture, it destroyed the TFT layer,” he says. “You have to use aggressive solvents, which attack organic materials.”

Project researchers at the Imperial College London eventually found ways to modify the inks and other materials making up the TFT layer so as to resist the solvents. The result is a process for printing a TFT layer that is compatible with a liquid crystal display.

Mosley also credits consortium partner IMEC in Belgium for research leading to the special ink formulations used to print the electronic components.

The group’s next challenge is to replace their current printing platform, Labratester 1, with the more sophisticated Labratester 2. Although both presses are capable of printing the tiny structures needed for optical electronics – 25 micron features with 25 micron spacing – Labratester 2 will be able to align sequential layers with 10 micron precision.

“You want to put down one layer and then lay the next one on it in a precise position,” Mosley says. “But the Labratester 1 simply wasn’t equipped to do that.”

He explains that Labratester 2 will use optical cameras to detect alignment marks in order to register each layer precisely over the previous one.

Wide range of expertise
CONTACT, which was funded under the EU’s Sixth Framework Programme for research, drew together the expertise of leading academic and industrial partners from Belgium, Germany, Switzerland and the UK.

In addition to fabricating the printers, the researchers made advances in formulating, synthesising and testing new materials, glass technology and thin-films.

Although the 42-month long project has now ended, two of the project partners, Schläelfli and Asulab, have opted to complete and test the Labratester 2 printer. Switzerland-based Asulab, which is part of the Swatch Group, plans to use Labratester 2 to print LCD watch displays.

“There may be opportunities for some clever designs,” says Mosley. “A glass display has to be rectangular or square, but with plastic you can cut it to any shape you want.”

Mosley expects that Labratester 2 will stimulate the entire organic electronics sector.

“As far as I’m aware, it will be the most advanced bench top gravure printer available worldwide,” he says. “There’s been a lot of interest in it from laboratories and R&D groups. When you look around the world, there are a lot of people interested in organic electronics.”

The Labratester 2 will be capable of printing only moderate numbers of devices at a time, but the advances that have gone into it can be transferred to faster machines.

“What we feel is that the machine will evolve into something that could do millions of copies of a certain item per year,” says Mosley. “It has that potential.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89831

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>