Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego computer scientist turns his face into a remote control

27.06.2008
New work at nexus of facial expression recognition research and automated tutoring

A computer science Ph.D. student can turn his face into a remote control that speeds and slows video playback. The proof-of-concept demonstration is part of a larger project to use automated facial expression recognition to make robots more effective teachers.

Jacob Whitehill, a computer science Ph.D. student from UC San Diego's Jacobs School of Engineering, is leading this project. It builds on technology for detecting facial expressions being developed at UC San Diego's Machine Perception Laboratory (MPLab), part of the Institute for Neural Computation, and housed in the UCSD Division of Calit2.

Watch Jacob Whitehill turn his face into a remote control in a three minute video at: http://video-jsoe.ucsd.edu/asx/Whitehill_UC_San_Diego.wmv.asx

In a recent pilot study, Whitehill and colleagues demonstrated that information within the facial expressions people make while watching recorded video lectures can be used to predict a person's preferred viewing speed of the video and how difficult a person perceives the lecture at each moment in time.

This new work is at the intersection of facial expression recognition research and automated tutoring systems.

"If I am a student dealing with a robot teacher and I am completely puzzled and yet the robot keeps presenting new material, that's not going to be very useful to me. If, instead, the robot stops and says, 'Oh, maybe you're confused,' and I say, 'Yes, thank you for stopping,' that's really good," said Whitehill, the computer science Ph.D. student leading the project.

The work is being presented in June 2008 at two peer-reviewed academic conferences. On June 25, Whitehill presents his findings at the Intelligent Tutoring Systems conference. On Saturday, June 28, Marian Stewart Bartlett, a co-director of the Machine Perception Laboratory, will present this work at the 2008 IEEE International Workshop on Computer Vision and Pattern Recognition for Human Communicative Behavior Analysis.

In the pilot study, the facial movements people made when they perceived the lecture to be difficult varied widely from person to person. Most of the 8 test subjects, however, blinked less frequently during difficult parts of the lecture than during easier portions of the lecture, which is supported by findings in psychology.

One of the next steps for this project is to determine what facial movements one person naturally makes when they are exposed to difficult or easy lecture material. From here, Whitehill could then train a user specific model that predicts when a lecture should be sped up or slowed down based on the spontaneous facial expressions a person makes, explained Whitehill.

To collect examples of the kinds of facial expressions involved in teaching and learning, Whitehill taught a group of people in his lab about German grammar and recorded the sessions using video conferencing software.

"I wanted to see the kinds of cues that students and teachers use to try to modulate or enrich the instruction. To me, it's about understanding and optimizing interactions between students and teachers," said Whitehill.

"I can see you nodding right now, for instance," said Whitehill during the interview. "That suggests to me that you're understanding, that I can keep going with what I am saying. If you give me a puzzled look, I might back up for a second."

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu
http://video-jsoe.ucsd.edu/asx/Whitehill_UC_San_Diego.wmv.asx

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>