Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell efficiency experts seek to save precious minutes in deploying ambulances

19.06.2008
Every extra second it takes an ambulance to get to its destination can mean life or death. But how, besides driving faster, can ambulances get emergency services to people in need as efficiently as possible, every day? It's a classic operations research question that three Cornell researchers are tackling in groundbreaking ways.

A National Science Foundation grant of almost $300,000 is allowing associate professor of operations research Shane Henderson, assistant professor of operations research Huseyin Topaloglu and applied mathematics Ph.D. student Mateo Restrepo to work on this problem. They are seeking to perfect a computer program that estimates how best to spread ambulances across a municipality to get maximum coverage at all times.

The researchers are working on a computerized approach to take such available information as historical trends of types and incidences of calls, geographical layout and real-time locations of ambulances to figure out where ambulance bases should be, and where ambulances should be sent once finished with a call.

The whole process is not unlike the puzzle game Tetris, Restrepo said. The easy part is knowing what an ideal system should look like. The hard part is anticipating various outcomes in a limited period of time, like the falling blocks in the video game.

Using their program, the researchers are recommending that ambulance organizations break the traditional setup of assigning ambulance crews to various bases and sending them back to their assigned locations once finished with a call.

Going back to base isn't necessarily the best option for maximum efficiency, say the operations researchers. It might be better to redeploy an idle ambulance to where coverage is lacking, even though no calls have yet been placed there.

"If everyone is constantly going back to the base assigned, they're ignoring what's going on in real time in the system," Henderson explained.

The concept is easy enough, but the solution is tricky, especially because of the enormous amount of uncertainty involved.

The field of operations research that deals with making decisions over time in the face of uncertainty is called dynamic programming, in which Topaloglu is an expert. The key is coming up with what's called a value function, a mathematical construction that estimates the impact of a current decision on the future evolution of the system. In this case, it's the impact of current ambulance locations on the number of future calls that are served on time.

"When you're trying to make a decision, you have to select the locations of your ambulances so the performance predicted by the value function is as good as possible," Topaloglu explained. "But it turns out that computing that function is very difficult, especially if you're talking about the scale of the problem we're trying to solve."

Henderson has more than 10 years of experience working on such problems, using a technique called simulation optimization, which is modeling different scenarios of what could happen in any given industrial system.

He and a colleague have already commercialized an earlier generation of emergency medical system planning, which now forms the basis for the technology used by the New Zealand ambulance company Optima.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Information Technology:

nachricht Single-photon detector can count to 4
18.12.2017 | Duke University

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>