Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell efficiency experts seek to save precious minutes in deploying ambulances

19.06.2008
Every extra second it takes an ambulance to get to its destination can mean life or death. But how, besides driving faster, can ambulances get emergency services to people in need as efficiently as possible, every day? It's a classic operations research question that three Cornell researchers are tackling in groundbreaking ways.

A National Science Foundation grant of almost $300,000 is allowing associate professor of operations research Shane Henderson, assistant professor of operations research Huseyin Topaloglu and applied mathematics Ph.D. student Mateo Restrepo to work on this problem. They are seeking to perfect a computer program that estimates how best to spread ambulances across a municipality to get maximum coverage at all times.

The researchers are working on a computerized approach to take such available information as historical trends of types and incidences of calls, geographical layout and real-time locations of ambulances to figure out where ambulance bases should be, and where ambulances should be sent once finished with a call.

The whole process is not unlike the puzzle game Tetris, Restrepo said. The easy part is knowing what an ideal system should look like. The hard part is anticipating various outcomes in a limited period of time, like the falling blocks in the video game.

Using their program, the researchers are recommending that ambulance organizations break the traditional setup of assigning ambulance crews to various bases and sending them back to their assigned locations once finished with a call.

Going back to base isn't necessarily the best option for maximum efficiency, say the operations researchers. It might be better to redeploy an idle ambulance to where coverage is lacking, even though no calls have yet been placed there.

"If everyone is constantly going back to the base assigned, they're ignoring what's going on in real time in the system," Henderson explained.

The concept is easy enough, but the solution is tricky, especially because of the enormous amount of uncertainty involved.

The field of operations research that deals with making decisions over time in the face of uncertainty is called dynamic programming, in which Topaloglu is an expert. The key is coming up with what's called a value function, a mathematical construction that estimates the impact of a current decision on the future evolution of the system. In this case, it's the impact of current ambulance locations on the number of future calls that are served on time.

"When you're trying to make a decision, you have to select the locations of your ambulances so the performance predicted by the value function is as good as possible," Topaloglu explained. "But it turns out that computing that function is very difficult, especially if you're talking about the scale of the problem we're trying to solve."

Henderson has more than 10 years of experience working on such problems, using a technique called simulation optimization, which is modeling different scenarios of what could happen in any given industrial system.

He and a colleague have already commercialized an earlier generation of emergency medical system planning, which now forms the basis for the technology used by the New Zealand ambulance company Optima.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>