Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell efficiency experts seek to save precious minutes in deploying ambulances

19.06.2008
Every extra second it takes an ambulance to get to its destination can mean life or death. But how, besides driving faster, can ambulances get emergency services to people in need as efficiently as possible, every day? It's a classic operations research question that three Cornell researchers are tackling in groundbreaking ways.

A National Science Foundation grant of almost $300,000 is allowing associate professor of operations research Shane Henderson, assistant professor of operations research Huseyin Topaloglu and applied mathematics Ph.D. student Mateo Restrepo to work on this problem. They are seeking to perfect a computer program that estimates how best to spread ambulances across a municipality to get maximum coverage at all times.

The researchers are working on a computerized approach to take such available information as historical trends of types and incidences of calls, geographical layout and real-time locations of ambulances to figure out where ambulance bases should be, and where ambulances should be sent once finished with a call.

The whole process is not unlike the puzzle game Tetris, Restrepo said. The easy part is knowing what an ideal system should look like. The hard part is anticipating various outcomes in a limited period of time, like the falling blocks in the video game.

Using their program, the researchers are recommending that ambulance organizations break the traditional setup of assigning ambulance crews to various bases and sending them back to their assigned locations once finished with a call.

Going back to base isn't necessarily the best option for maximum efficiency, say the operations researchers. It might be better to redeploy an idle ambulance to where coverage is lacking, even though no calls have yet been placed there.

"If everyone is constantly going back to the base assigned, they're ignoring what's going on in real time in the system," Henderson explained.

The concept is easy enough, but the solution is tricky, especially because of the enormous amount of uncertainty involved.

The field of operations research that deals with making decisions over time in the face of uncertainty is called dynamic programming, in which Topaloglu is an expert. The key is coming up with what's called a value function, a mathematical construction that estimates the impact of a current decision on the future evolution of the system. In this case, it's the impact of current ambulance locations on the number of future calls that are served on time.

"When you're trying to make a decision, you have to select the locations of your ambulances so the performance predicted by the value function is as good as possible," Topaloglu explained. "But it turns out that computing that function is very difficult, especially if you're talking about the scale of the problem we're trying to solve."

Henderson has more than 10 years of experience working on such problems, using a technique called simulation optimization, which is modeling different scenarios of what could happen in any given industrial system.

He and a colleague have already commercialized an earlier generation of emergency medical system planning, which now forms the basis for the technology used by the New Zealand ambulance company Optima.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>