Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New intrusion tolerance software fortifies server security

In spite of increased focus and large investments in computer security, critical infrastructure systems remain vulnerable to attacks, says Arun Sood, professor of computer science at George Mason University.

The increasing sophistication and incessant morphing of cyber-attacks lend importance to the concept of intrusion tolerance: a system must fend off, or at least limit, the damage caused by unknown and/or undetected attacks.

“The problem is that no matter how much investment is made in intrusion prevention and detection, intruders will still manage to break through and trespass on computer servers,” says Sood. “By looking at this problem from a different angle, we developed a way to contain the losses that may occur because of an intrusion.”

Sood, who is the director of the Laboratory of Interdisciplinary Computer Science at Mason, along with Yin Huang, senior research scientist in the Center for Secure Information Systems at Mason, created the Self Cleansing Intrusion Tolerance (SCIT) technology to provide an additional layer of defense to security architecture with firewalls and intrusion prevention and detection systems. While typical approaches to computer security are reactive and require prior knowledge of all attack modalities and software vulnerabilities, intrusion tolerance is a proactive approach to security.

In the SCIT approach, a server that has been online is assumed to have been compromised. SCIT servers are focused on limiting the losses that can occur because of an external intrusion, and achieve this goal by limiting the exposure time of the server to the Internet. Exposure time is defined as the duration of time that a server is continuously connected to the Internet. Through the use of virtualization technology, duplicate servers are created and an online server is periodically cleansed and restored to a known clean state, regardless of whether an intrusion has been detected. These regular cleansings take place in sub-minute intervals.

“This approach of regular cleansings, when coupled with existing intrusion prevention and detection systems, leads to increased overall security,” says Sood. “We know that intrusion detection systems can detect sudden increases in data throughput from a server, so to avoid detection, hackers steal data at low rates. SCIT interrupts the flow of data regularly and automatically, and the data ex-filtration process is interrupted every cleansing cycle. Thus, SCIT, in partnership with intrusion detection systems, limits the volume of data that can be stolen.”

By reducing exposure time, SCIT provides an additional level of protection while efforts are ongoing to find and fix vulnerabilities and correct configuration errors.

SCIT was funded by the Center for Innovative Technology (in partnership with Northrop Grumman), Lockheed Martin, National Institute of Standards and Technology through the Critical Infrastructure Protection Program, Sun Microsystems and the U.S. Army’s Telemedicine and Technology Research Center. Four patents are pending on the SCIT technology.

About The Volgenau School of Information Technology and Engineering

Since its founding, The Volgenau School of Information Technology and Engineering has enjoyed more than 20 years of significant accomplishments, including being the first in the nation to establish a PhD program in information technology and becoming a nationally recognized leader in several important research areas. The school’s award-winning faculty, along with its relationship with the Washington, D.C., metro area technology industry, is fundamental to its success. Through partnerships with a wide range of companies and individuals, the Volgenau School is always working to identify next-generation technology and how it can meet the needs of industry and better serve the community, the region and the nation.

About George Mason University

George Mason University, located in the heart of Northern Virginia’s technology corridor near Washington, D.C., is an innovative, entrepreneurial institution with national distinction in a range of academic fields. With strong undergraduate and graduate degree programs in engineering, information technology, biotechnology and health care, Mason prepares its students to succeed in the work force and meet the needs of the region and the world. Mason professors conduct groundbreaking research in areas such as cancer, climate change, information technology and the biosciences, and Mason’s Center for the Arts brings world-renowned artists, musicians and actors to its stage. Its School of Law is recognized by U.S. News & World Report as one of the top 40 law schools in the United States.

Jennifer Edgerly | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>