Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New intrusion tolerance software fortifies server security

19.06.2008
In spite of increased focus and large investments in computer security, critical infrastructure systems remain vulnerable to attacks, says Arun Sood, professor of computer science at George Mason University.

The increasing sophistication and incessant morphing of cyber-attacks lend importance to the concept of intrusion tolerance: a system must fend off, or at least limit, the damage caused by unknown and/or undetected attacks.

“The problem is that no matter how much investment is made in intrusion prevention and detection, intruders will still manage to break through and trespass on computer servers,” says Sood. “By looking at this problem from a different angle, we developed a way to contain the losses that may occur because of an intrusion.”

Sood, who is the director of the Laboratory of Interdisciplinary Computer Science at Mason, along with Yin Huang, senior research scientist in the Center for Secure Information Systems at Mason, created the Self Cleansing Intrusion Tolerance (SCIT) technology to provide an additional layer of defense to security architecture with firewalls and intrusion prevention and detection systems. While typical approaches to computer security are reactive and require prior knowledge of all attack modalities and software vulnerabilities, intrusion tolerance is a proactive approach to security.

In the SCIT approach, a server that has been online is assumed to have been compromised. SCIT servers are focused on limiting the losses that can occur because of an external intrusion, and achieve this goal by limiting the exposure time of the server to the Internet. Exposure time is defined as the duration of time that a server is continuously connected to the Internet. Through the use of virtualization technology, duplicate servers are created and an online server is periodically cleansed and restored to a known clean state, regardless of whether an intrusion has been detected. These regular cleansings take place in sub-minute intervals.

“This approach of regular cleansings, when coupled with existing intrusion prevention and detection systems, leads to increased overall security,” says Sood. “We know that intrusion detection systems can detect sudden increases in data throughput from a server, so to avoid detection, hackers steal data at low rates. SCIT interrupts the flow of data regularly and automatically, and the data ex-filtration process is interrupted every cleansing cycle. Thus, SCIT, in partnership with intrusion detection systems, limits the volume of data that can be stolen.”

By reducing exposure time, SCIT provides an additional level of protection while efforts are ongoing to find and fix vulnerabilities and correct configuration errors.

SCIT was funded by the Center for Innovative Technology (in partnership with Northrop Grumman), Lockheed Martin, National Institute of Standards and Technology through the Critical Infrastructure Protection Program, Sun Microsystems and the U.S. Army’s Telemedicine and Technology Research Center. Four patents are pending on the SCIT technology.

About The Volgenau School of Information Technology and Engineering

Since its founding, The Volgenau School of Information Technology and Engineering has enjoyed more than 20 years of significant accomplishments, including being the first in the nation to establish a PhD program in information technology and becoming a nationally recognized leader in several important research areas. The school’s award-winning faculty, along with its relationship with the Washington, D.C., metro area technology industry, is fundamental to its success. Through partnerships with a wide range of companies and individuals, the Volgenau School is always working to identify next-generation technology and how it can meet the needs of industry and better serve the community, the region and the nation.

About George Mason University

George Mason University, located in the heart of Northern Virginia’s technology corridor near Washington, D.C., is an innovative, entrepreneurial institution with national distinction in a range of academic fields. With strong undergraduate and graduate degree programs in engineering, information technology, biotechnology and health care, Mason prepares its students to succeed in the work force and meet the needs of the region and the world. Mason professors conduct groundbreaking research in areas such as cancer, climate change, information technology and the biosciences, and Mason’s Center for the Arts brings world-renowned artists, musicians and actors to its stage. Its School of Law is recognized by U.S. News & World Report as one of the top 40 law schools in the United States.

Jennifer Edgerly | EurekAlert!
Further information:
http://www.gmu.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>