Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Supercomputer JUGENE Still on Top of the World

With 180 teraflop/s Jülich's supercomputer occupies place 6 in the world ranking / Plans for new supercomputers

In the TOP500 list of the world's fastest computers published today, Jülich's JUGENE computer was able to defend its position as Europe's fastest computer. Overall, it took a good sixth place - beaten only by 5 supercomputers from the US. Jülich computer scientists are making long-term plans to secure their place in the top group.

"We want JUGENE and its successors to continue to play in the big league", says Prof. Thomas Lippert, Head of the Jülich Supercomputing Centre. "After all, the requirements of the large number of groups who use our computing facilities are continuously growing." About 200 research groups from all over Europe use the Jülich supercomputers as tools in order to achieve new insights for their work. The research topics range from the formation of galaxies to protein folding and improved materials.

In order to continue to keep up with demand for computing time, the dual concept of Forschungszentrum Jülich - a member of the Helmholtz Association of National Research Centres - will be further expanded. On the one hand, computers of the highest performance class such as JUGENE (Jülich Blue Gene) will be available for applications requiring the greatest number-crunching power. On the other hand, supercomputers with a high data throughput such as JUMP (Jülich Multi-Processor) will be used for data-intensive applications such as climate research. "We are seeking to establish contacts with the IT industry at an early stage for this further development", adds Lippert. "In this way, we will be able to ensure that user requirements are considered in hardware developments, and, vice versa, that existing algorithms are adapted to the benefits brought by coming architectures."

At the moment, the Jülich computer scientists are planning to develop their dual concept as follows. A cluster computer for data-intensive applications known as JuRoPA (Jülich Research on Petaflop/s Architectures) will be put into operation by early 2009 and will replace the JUMP computer. It will incorporate Xeon processors from Intel and a fast network from Quadrics. The connection of about 16,000 processors will enable the computer to achieve a power of more than 200 teraflop/s.

In the medium term, JUGENE is scheduled to be replaced by a computer capable of breaking the 1 petaflop/s barrier. A decision has not yet been taken on the chip architecture. "From users we have received very positive feedback on JUGENE for the Blue Gene /P system", says Lippert. JUGENE was officially put into operation in February and has already demonstrated that it can be used for a wide range of research topics.

"At the same time, we are of course also testing the cell technology as applied in the new front runner of the TOP500 list, Roadrunner", adds Lippert. At the beginning of June, an 8 teraflop/s prototype called JUICEnext was installed in Jülich. It is based on 70 IBM PowerXCell 8i processors and two fast networks - one based on Infiniband and one on Ethernet. "Even this small system will help us to discover the most effective way forward for petaflop/s computing in Germany".

Press releases all about the JUGENE supercomputer.
Our brochure on supercomputing
Supercomputers and simulation science in Jülich
List of the world's fastest supercomputers:
Press contact:
Kosta Schinarakis, tel. +49 2461 61-4771, e-mail:
Forschungszentrum Jülich...
...pursues cutting-edge interdisciplinary research on solving the grand challenges facing society in the fields of health, energy & environment, and information technologies. In combination with the two key competencies - physics and supercomputing - work at Jülich focuses on both long-term, fundamental and multidisciplinary contributions to science and technology as well as on specific technological applications. With a staff of about 4400, Jülich - a member of the Helmholtz Association - is one of the largest research centres in Europe.

Peter Schäfer | idw
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>