Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer JUGENE Still on Top of the World

18.06.2008
With 180 teraflop/s Jülich's supercomputer occupies place 6 in the world ranking / Plans for new supercomputers

In the TOP500 list of the world's fastest computers published today, Jülich's JUGENE computer was able to defend its position as Europe's fastest computer. Overall, it took a good sixth place - beaten only by 5 supercomputers from the US. Jülich computer scientists are making long-term plans to secure their place in the top group.

"We want JUGENE and its successors to continue to play in the big league", says Prof. Thomas Lippert, Head of the Jülich Supercomputing Centre. "After all, the requirements of the large number of groups who use our computing facilities are continuously growing." About 200 research groups from all over Europe use the Jülich supercomputers as tools in order to achieve new insights for their work. The research topics range from the formation of galaxies to protein folding and improved materials.

In order to continue to keep up with demand for computing time, the dual concept of Forschungszentrum Jülich - a member of the Helmholtz Association of National Research Centres - will be further expanded. On the one hand, computers of the highest performance class such as JUGENE (Jülich Blue Gene) will be available for applications requiring the greatest number-crunching power. On the other hand, supercomputers with a high data throughput such as JUMP (Jülich Multi-Processor) will be used for data-intensive applications such as climate research. "We are seeking to establish contacts with the IT industry at an early stage for this further development", adds Lippert. "In this way, we will be able to ensure that user requirements are considered in hardware developments, and, vice versa, that existing algorithms are adapted to the benefits brought by coming architectures."

At the moment, the Jülich computer scientists are planning to develop their dual concept as follows. A cluster computer for data-intensive applications known as JuRoPA (Jülich Research on Petaflop/s Architectures) will be put into operation by early 2009 and will replace the JUMP computer. It will incorporate Xeon processors from Intel and a fast network from Quadrics. The connection of about 16,000 processors will enable the computer to achieve a power of more than 200 teraflop/s.

In the medium term, JUGENE is scheduled to be replaced by a computer capable of breaking the 1 petaflop/s barrier. A decision has not yet been taken on the chip architecture. "From users we have received very positive feedback on JUGENE for the Blue Gene /P system", says Lippert. JUGENE was officially put into operation in February and has already demonstrated that it can be used for a wide range of research topics.

"At the same time, we are of course also testing the cell technology as applied in the new front runner of the TOP500 list, Roadrunner", adds Lippert. At the beginning of June, an 8 teraflop/s prototype called JUICEnext was installed in Jülich. It is based on 70 IBM PowerXCell 8i processors and two fast networks - one based on Infiniband and one on Ethernet. "Even this small system will help us to discover the most effective way forward for petaflop/s computing in Germany".

Press releases all about the JUGENE supercomputer.
http://www.fz-juelich.de/portal/index.php?index=163&cmd=show&mid=537
http://www.fz-juelich.de/portal/index.php?index=163&cmd=show&mid=564
Our brochure on supercomputing
www.fz-juelich.de/portal/datapool/page/569//Supercomp_netz.pdf
Supercomputers and simulation science in Jülich
http://www.fz-juelich.de/portal/index.php?index=1237
List of the world's fastest supercomputers:
http://www.top500.org/
Press contact:
Kosta Schinarakis, tel. +49 2461 61-4771, e-mail: k.schinarakis@fz-juelich.de
Forschungszentrum Jülich...
...pursues cutting-edge interdisciplinary research on solving the grand challenges facing society in the fields of health, energy & environment, and information technologies. In combination with the two key competencies - physics and supercomputing - work at Jülich focuses on both long-term, fundamental and multidisciplinary contributions to science and technology as well as on specific technological applications. With a staff of about 4400, Jülich - a member of the Helmholtz Association - is one of the largest research centres in Europe.

Peter Schäfer | idw
Further information:
http://www.fz-juelich.de/
http://www.fz-juelich.de/portal/index.php?index=1237
http://www.top500.org/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>