Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Chatter Box’ computer will unravel the science of language

13.06.2008
Scientists are to use a powerful super computer to mimic the part of the brain that controls speech and language function to better understand what goes wrong after brain damage caused by trauma or stroke.

Psychologists at The University of Manchester have teamed up with colleagues in the School of Computer Science to develop the speech and language model using a computer system that will be up to 1,000 times more powerful than a standard PC.

Dubbed ‘Chatter Box’, the £940K, five-year study is linked to the £1 million ‘Brain Box’ project that aims to build this new breed of computer based on biological principles that will enable it to carry out highly complex functions like those performed by the human brain.

“The human brain contains about one hundred billion nerve cells or neurons that each have to make a simple decision as to whether to ‘fire’ or not,” said Professor Steve Furber, in the School of Computer Science.

“Each neuron’s decision is based on how many other connecting neurons have fired recently. When this simple computation is distributed over billions of neurons, it is capable of supporting all the highly complex behavioural characteristics exhibited by humans.

“The Brain Box computer is being built using simple microprocessors that are designed to interact like the networks of neurons in the brain allowing it to replicate sophisticated functions such as speech.”

Once the team have successfully produced the machine they will use it to build a model of normal human language capable of reading, comprehending, speaking, naming and repeating basic words in English.

“To train such a model using existing computer simulators would take far too long – possibly more than a lifetime,” said Dr Stephen Welbourne, in the School of Psychological Sciences.

“We will validate this model by showing that damaging it can lead to the same patterns of behaviour as those found in brain-damaged individuals.

“We will then use the model to predict the results of different speech therapy strategies and will test these predictions in a population of stroke patients who have linguistic problems.

“Our goal is to understand how the brain supports language function, how this breaks down after brain damage and the mechanisms that support recovery and rehabilitation.”

The Chatter Box study has been funded by the Engineering and Physical Sciences Research Council, the Medical Research Council and the Biotechnology and Biological Sciences Research Council under the Cognitive Foresight Programme.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/display/?id=3736
http://www.cs.manchester.ac.uk/aboutus/newsevents/press/2006/01-07-06/

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>