Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Saucy' Software Update Finds Symmetries Dramatically Faster

13.06.2008
Computer scientists at the University of Michigan developed open-source software that cuts the time to find symmetries in complicated equations from days to seconds in some cases.

Finding symmetries is a way to highlight shortcuts to answers that, for example, verify the safety of train schedules, identify bugs in software and hardware designs, or speed up common search tasks.

The algorithm is an update to software called "saucy" that the researchers developed in 2004 and shared with colleagues. Paul Darga, a graduate student in the Department of Electrical Engineering and Computer Science, will present the algorithm on June 10 at the Design Automation Conference in Anaheim, Calif. Darga's co-authors are Igor Markov, associate professor in the Department of Electrical Engineering and Computer Science, and Karem Sakallah, a professor in the same department.

The software's applications extend to artificial intelligence and logistics.It speeds up solutions to fundamental computer science problems and quickly solves what's called the graph automorphism problem. "Our new algorithm solves the graph automorphism problem so quickly in real-life applications that the problem is starting to look easy," Markov said.

Symmetries are, in a sense, interchangeable options that lead to the same outcome. In complicated equations, symmetries point to repeated branches of the search for solutions that only need to be figured out once. Current programs that look for symmetries can take days to give results even when they find no instances, Darga said. The new method finishes in seconds even when there are millions of variables.

To illustrate how finding symmetries can simplify equations, Markov pointed to the pigeonhole principle. This says you can't, for example, fit 10 birds in nine pigeonholes (unless they share.) The particular problem has a nine-fold symmetry because it doesn't matter which hole each bird occupies. One will always end up homeless. It also has a 10-fold symmetry because the birds are considered interchangeable.

"If you ask a computer to put 20 trains on 19 tracks, this computation may take forever," Markov said. "But if you use an approach with symmetry breaking, these cases can be solved in seconds."

Symmetry breaking in train scheduling and logistics can also help figure the shortest itineraries. In artificial intelligence, the ability to recognize symmetries quickly could help a computer generate a plan or an optimal schedule. The computer would know when the order of tasks was interchangeable.

The new algorithm starts working in the same way as existing symmetry breaking software. It converts the complicated equation into a graph and looks for similarities in the arrangement of the vertices. Like the original version of saucy, it narrows the search while exploiting what Darga calls "sparsity"---the fact that almost every node on the graph is only connected to a few other nodes.

The saucy update recognizes that it's not just the node connections that are sparse. It turns out that most important symmetries themselves are sparse too, in that they involve only several nodes at a time. Other symmetries can be derived from sparse symmetries, and the number of distinct symmetries can grow exponentially with the size of the system.

"Just like snowflakes, many interconnected systems in technology and nature are sparse and exhibit structural symmetries," Sakallah said. "The internet connectivity graph we worked with reminds me of a giant snowflake. It has a quarter million vertices and half a million edges, but it exhibits more symmetries than there are electrons in the universe."

In less than a half-second, the new software captured 1083,687 different symmetries in an Internet connectivity graph of routers around the world. A symmetry in this graph signifies a way the routers could be shuffled that wouldn't change the operation.

Previous methods timed out in the 30 minutes they were given to generate results in these experiments. Darga said it would take these older programs days to solve such a complicated problem. In searching for symmetries in the road networks between cities and towns in Illinois, the new algorithm captured the 104,843 symmetries in less than a half-second, whereas the most robust previous algorithm took 16 minutes.

The paper is called "Faster Symmetry Discovery Using Sparsity of Symmetries." It is available at http://www.eecs.umich.edu/~imarkov/pubs/conf/dac08-sym.pdf. Information about how to obtain the software is at http://vlsicad.eecs.umich.edu/BK/SAUCY/.

For more information:
Paul Darga: http://www.eecs.umich.edu/~pdarga
Igor Markov: http://www.eecs.umich.edu/~imarkov
Karem Sakallah: http://www.eecs.umich.edu/~karem
Design Automation Conference: http://www.dac.com/45th/index.aspx
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, multidisciplinary scope and international scale combine to create The Michigan Difference.

Nicole Casal Moore | alfa
Further information:
http://www.engin.umich.edu

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>