Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

School of Robofish Provides Basis for Teams of Underwater Robots

09.06.2008
Most ocean robots have to talk to scientists or satellites to share information. A school of robotic fish developed at the University of Washington communicate directly, allowing them to work cooperatively without ever coming to the surface.

In the world of underwater robots, this is a team of pioneers. While most ocean robots require periodic communication with scientist or satellite intermediaries to share information, these can work cooperatively communicating only with each other.

Over the past five years Kristi Morgansen, a University of Washington assistant professor of aeronautics and astronautics, has built three Robofish that communicate with one another underwater. Recently at the International Federation of Automatic Control's Workshop on Navigation, Guidance and Control of Underwater Vehicles she presented results showing that the robots had successfully completed their first major test.

The robots were programmed to either all swim in one direction or all swim in different directions, basic tasks that can provide the building blocks for coordinated group movement. This success in indoor test tanks, she said, will eventually provide the basis for ocean-going systems to better explore remote ocean environments.

"Underwater robots don't need oxygen. The only reason they come up to the surface right now is for communication," Morgansen said. Her robots do not need to come to the surface until their task is complete.

In the future, ocean-going robots could cooperatively track moving targets underwater, such as groups of whales or spreading plumes of pollution, or explore caves, underneath ice-covered waters, or in dangerous environments where surfacing might not be possible. Schools of robots would be able to work together to do things that one could not do alone, such as tracking large herds of animals or mapping expanses of pollution that can grow and change shape.

Co-authors on the recent study were UW doctoral students Daniel Klein and Benjamin Triplett in aeronautics and astronautics, and UW graduate student Patrick Bettale in electrical engineering. The research was supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

The Robofish, which are roughly the size of a 10-pound salmon, look a bit like fish because they use fins rather than propellers. The fins make them potentially more maneuverable and are thought to create lower drag than propeller-driven vehicles.

But while other research groups are building fishlike robots, what's novel with this system is that the robotic fish can communicate wirelessly underwater. Again, Morgansen looked to natural systems for inspiration. The engineers worked with collaborator Julia Parrish, an associate professor in the UW's School of Aquatic and Fishery Sciences, to record patterns of fish schools' behavior.

"In schooling and herding animals, you can get much more efficient maneuvers and smoother behaviors than what we can do in engineering right now," Morgansen explained. "The idea of these experiments (with schools of live fish) is to ask, 'How are they doing it?' and see if we can come up with some ideas."

The team trained some live fish to respond to a stimulus by swimming to the feeding area. The scientists discovered that even when less than a third of the fish were trained, the whole school swam to the feeding area on cue.

"The fish that have a strong idea tend to dominate over those that don't," Morgansen said. "That has implications for what will happen in a group of vehicles. Can one vehicle make the rest of the group do something just based on its behavior?"

Beyond finding the optimal way to coordinate movement of the robots, the researchers faced major challenges in having robots transmit information through dense water.

"When you're underwater you run into problems with not being able to send a lot of data," Morgansen said. State of the art is 80 bytes, or about 32 numbers, per second, she said.

The energy required to send the information over long distances is prohibitive because the robots have limited battery power. What's more, signals can become garbled when they reflect off the surface or off of any obstacles.

Messages were sent between the robots using low-frequency sonar pulses, or pressure waves. The new results showed that only about half the information was received successfully, yet because of the way the Robofish were programmed they were still able to accomplish their tasks. Robots that can independently carry out two simple sets of instructions—swimming in the same direction or swimming in different directions—will allow them to carry out more complicated missions.

Now researchers are using the fish's coordination ability to do a task more similar to what they would face in the ocean. The Robofish pack's first assignment, beginning this summer, will be to trail a remote-controlled toy shark.

For more information, contact Morgansen at (206) 616-5950 or morgansen@aa.washington.edu.

Images are posted with this release at http://uwnews.org/article.asp?articleID=42371. More information on the research is at http://vger.aa.washington.edu/research.html.

Morgansen | newswise
Further information:
http://vger.aa.washington.edu/research.html
http://uwnews.org/article.asp?articleID=42371

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>