Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

School of Robofish Provides Basis for Teams of Underwater Robots

09.06.2008
Most ocean robots have to talk to scientists or satellites to share information. A school of robotic fish developed at the University of Washington communicate directly, allowing them to work cooperatively without ever coming to the surface.

In the world of underwater robots, this is a team of pioneers. While most ocean robots require periodic communication with scientist or satellite intermediaries to share information, these can work cooperatively communicating only with each other.

Over the past five years Kristi Morgansen, a University of Washington assistant professor of aeronautics and astronautics, has built three Robofish that communicate with one another underwater. Recently at the International Federation of Automatic Control's Workshop on Navigation, Guidance and Control of Underwater Vehicles she presented results showing that the robots had successfully completed their first major test.

The robots were programmed to either all swim in one direction or all swim in different directions, basic tasks that can provide the building blocks for coordinated group movement. This success in indoor test tanks, she said, will eventually provide the basis for ocean-going systems to better explore remote ocean environments.

"Underwater robots don't need oxygen. The only reason they come up to the surface right now is for communication," Morgansen said. Her robots do not need to come to the surface until their task is complete.

In the future, ocean-going robots could cooperatively track moving targets underwater, such as groups of whales or spreading plumes of pollution, or explore caves, underneath ice-covered waters, or in dangerous environments where surfacing might not be possible. Schools of robots would be able to work together to do things that one could not do alone, such as tracking large herds of animals or mapping expanses of pollution that can grow and change shape.

Co-authors on the recent study were UW doctoral students Daniel Klein and Benjamin Triplett in aeronautics and astronautics, and UW graduate student Patrick Bettale in electrical engineering. The research was supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

The Robofish, which are roughly the size of a 10-pound salmon, look a bit like fish because they use fins rather than propellers. The fins make them potentially more maneuverable and are thought to create lower drag than propeller-driven vehicles.

But while other research groups are building fishlike robots, what's novel with this system is that the robotic fish can communicate wirelessly underwater. Again, Morgansen looked to natural systems for inspiration. The engineers worked with collaborator Julia Parrish, an associate professor in the UW's School of Aquatic and Fishery Sciences, to record patterns of fish schools' behavior.

"In schooling and herding animals, you can get much more efficient maneuvers and smoother behaviors than what we can do in engineering right now," Morgansen explained. "The idea of these experiments (with schools of live fish) is to ask, 'How are they doing it?' and see if we can come up with some ideas."

The team trained some live fish to respond to a stimulus by swimming to the feeding area. The scientists discovered that even when less than a third of the fish were trained, the whole school swam to the feeding area on cue.

"The fish that have a strong idea tend to dominate over those that don't," Morgansen said. "That has implications for what will happen in a group of vehicles. Can one vehicle make the rest of the group do something just based on its behavior?"

Beyond finding the optimal way to coordinate movement of the robots, the researchers faced major challenges in having robots transmit information through dense water.

"When you're underwater you run into problems with not being able to send a lot of data," Morgansen said. State of the art is 80 bytes, or about 32 numbers, per second, she said.

The energy required to send the information over long distances is prohibitive because the robots have limited battery power. What's more, signals can become garbled when they reflect off the surface or off of any obstacles.

Messages were sent between the robots using low-frequency sonar pulses, or pressure waves. The new results showed that only about half the information was received successfully, yet because of the way the Robofish were programmed they were still able to accomplish their tasks. Robots that can independently carry out two simple sets of instructions—swimming in the same direction or swimming in different directions—will allow them to carry out more complicated missions.

Now researchers are using the fish's coordination ability to do a task more similar to what they would face in the ocean. The Robofish pack's first assignment, beginning this summer, will be to trail a remote-controlled toy shark.

For more information, contact Morgansen at (206) 616-5950 or morgansen@aa.washington.edu.

Images are posted with this release at http://uwnews.org/article.asp?articleID=42371. More information on the research is at http://vger.aa.washington.edu/research.html.

Morgansen | newswise
Further information:
http://vger.aa.washington.edu/research.html
http://uwnews.org/article.asp?articleID=42371

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>